Analisis Sentimen K-Popers di Twitter (X) terhadap Harga Tiket Konser Menggunakan Metode Support Vector Machine
Studi Kasus: Golden Disk Awards 2024
DOI:
https://doi.org/10.46880/jmika.Vol9No2.pp350-355Keywords:
Korean Pop (K-Pop), The 38th Golden Disc Awards (GDA) 2024, Ticket price, Sentiment analysis, Support Vector Machine (SVM)Abstract
Korean Pop (K-Pop) in Indonesia has grown rapidly, creating a large and influential community of fans, known as “K-Popers”. The popularity of K-Pop is supported by digital technology that allows easy access to South Korean music and entertainment content. Social media, including Twitter (X), became the main platform for K- Pop fans or K-Popers to interact and share opinions about the South Korean music industry. The ticket price of The 38th Golden Disc Awards (GDA) 2024 in Jakarta became a controversial hot topic, causing debate among fans regarding the overpriced ticket price. This study aims to analyze the sentiment of K-Popers towards GDA 2024 ticket prices using the Support Vector Machine (SVM) method to classify positive and negative sentiments related to GDA 2024 ticket prices. The analysis showed that negative sentiment was more dominant with 62.31% of 2698 tweets, indicating the need to evaluate the ticket price policy by the organizers. Sentiment classification with SVM method achieved the highest accuracy of 85.19% with polynomial kernel at the proportion of training and test data of 90:10, indicating that this method is good at classifying positive and negative sentiments. This research provides insights for event organizers regarding fan responses and can help in planning ticket pricing policies and marketing strategies so as to increase subsequent customer satisfaction.
References
Amrullah, A. Z., Anas, A. S., & Hidayat, M. A. J. (2020). Analisis Sentimen Movie Review Menggunakan Naive Bayes Classifier Dengan Seleksi Fitur Chi Square. Jurnal Bumigora Information Technology (BITe), 2(1), 40–44.
Angelina, D., Hayati, U., & Dwilestari, G. (2023). Penerapan Metode Support Vector Machine Pada Sentimen Analisis Pengguna Twitter Terhadap Konser K-Pop. KOPERTIP: Scientific Journal of Informatics Management and Computer, 7(1), 14–23.
Cahyani, S. N., & Saraswati, G. W. (2023). Implementation of Support Vector Machine Method in Classifying School Library Books with Combination of TF-IDF and Word2Vec. Jurnal Teknik Informatika (Jutif), 4(6), 1555–1566. https://doi.org/10.52436/1.jutif.2023.4.6.1536
Daniati, E., & Utama, H. (2023). Analisis Sentimen Dengan Pendekatan Ensemble Learning dan Word Embedding pada Twitter. Journal of Information System Management (JOISM), 4(2), 125–131. https://doi.org/10.24076/joism.2023v4i2.973
Lainsyamputty, N. P. A. (2021). Konstruksi identitas dan relasi interpersonal oleh roleplayer artis K-Pop di Twitter. KOMUNIKATIF: Jurnal Ilmiah Komunikasi, 10(2), 197–213.
Noviana, R., & Rasal, I. (2023). Penerapan Algoritma Naive Bayes Dan Svm Untuk Analisis Sentimen Boy Band Bts Pada Media Sosial Twitter. Jurnal Teknik Dan Science (JTS), 2(2), 51–60.
Nurmawati, P., Supriyati, E., & Listyorini, T. (2020). Analisis Sentimen Terhadap Penggemar K-Pop Di Media Sosial Twitter Menggunakan Naive Bayes (Studi Kasus Penggemar Grup BTS). Journal Information Engineering and Educational Technology) , 4(2), 86–89.
Putri, I. F., Witanti, W., & Ramadhan, E. (2024). Analisis Sentimen Keberhasilan Debut Grup K-Pop Pada Platform X Menggunakan Algoritma Support Vector Machine. Seminar Nasional Penelitian (SEMNAS CORISINDO 2024), 397–403.
Putri, N. A., & Setiawan, J. H. (2025). Motivasi Konsumen dalam Pembelian Tiket Konser NCT: Studi pada Penggemar K-Pop di Indonesia. Jurnal Sosial Ekonomi Dan Humaniora, 11(1), 1–12.
Sahbuddin, M., & Agustian, S. (2022). Support Vector Machine Method with Word2vec for Covid-19 Vaccine Sentiment Classification on Twitter. Journal of Informatics and Telecommunication Engineering, 6(1), 288–297. https://doi.org/10.31289/jite.v6i1.7534
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Sri Sutjiningtyas, Samsul Budiarto, Marlyna Infryanty Hutapea, Nurulqolbi Mutmainnah

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.










