Penerapan Algoritma DBSCAN dalam Mengidentifikasi Risiko Stroke

Authors

  • Hani Istiqomah Universitas Harapan Bangsa
  • Khoirun Nisa Universitas Harapan Bangsa
  • Arif Setia Sandi A. Universitas Harapan Bangsa

DOI:

https://doi.org/10.46880/jmika.Vol9No2.pp340-349

Keywords:

Clustering, DBSCAN Algorithm, PCA, Risk Factors, Stroke

Abstract

Stroke is a serious disease that can cause permanent disability and death. This study applies the DBSCAN algorithm to cluster Stroke risk using a public Kaggle dataset (n = 5,110), which contains demographic and clinical attributes such as age, gender, hypertension, heart disease, body mass index (BMI), glucose levels, and smoking status. Preprocessing steps included median imputation for BMI, categorical encoding, Z-score standardization, and PCA for visualization. Parameter selection was conducted using the k-distance plot and Silhouette evaluation, resulting in ε = 2.5 and min_samples = 3 with a Silhouette Score of 0.2158. The findings indicate that DBSCAN has potential to support Stroke prevention strategies, although further parameter tuning and feature optimization are required to improve clustering quality.

References

Ding, L., Mane, R., Wu, Z., Jiang, Y., Meng, X., Jing, J., Ou, W., Wang, X., Liu, Y., Lin, J., Zhao, X., Li, H., Wang, Y., & Li, Z. (2022). Data-driven clustering approach to identify novel phenotypes using multiple biomarkers in acute ischaemic stroke: A retrospective, multicentre cohort study. EClinicalMedicine.

Hermanto, T. I. S. M. A. (2020). Analisis Data Sebaran Penyakit Menggunakan Algoritma Density Based Spatial Clustering Of Application WIith Noise. Jurnal Sains Komputer Dan Teknologi Informasi, 3, 104–110. https://doi.org/https://doi.org/10.33084/jsakti.v3i1.1775

Hu, Y., Yan, H., Liu, M., Gao, J., Xie, L., Zhang, C., Wei, L., Ding, Y., & Jiang, H. (2024). Detecting cardiovascular diseases using unsupervised machine learning clustering based on electronic medical records. BMC Medical Research Methodology, 24(1). https://doi.org/10.1186/s12874-024-02422-z

Islam, Y., Chowdhury, Md. J. U., & Das, S. C. (2025). Advancing Tabular Stroke Modelling Through a Novel Hybrid Architecture and Feature-Selection Synergy. http://arxiv.org/abs/2505.15844

Kim, J. T., Kim, N. R., Choi, S. H., Oh, S., Park, M. S., Lee, S. H., Kim, B. C., Choi, J., & Kim, M. S. (2022). Neural network-based clustering model of ischemic stroke patients with a maximally distinct distribution of 1-year vascular outcomes. Scientific Reports, 12(1). https://doi.org/10.1038/s41598-022-13636-w

Ma, B., Yang, C., Li, A., Chi, Y., & Chen, L. (2023). A Faster DBSCAN Algorithm Based on Self-Adaptive Determination of Parameters. Procedia Computer Science, 221, 113–120. https://doi.org/10.1016/j.procs.2023.07.017

Ovyawan Herlistiono, I., & Violina, S. (2024). Model Prediksi Risiko Stroke Menggunakan Machine Learning Stroke Risk Prediction Model Using Machine Learning. Journal of Information Technology and Computer Science (INTECOMS), 7(4).

Puspitasari, D. A., Cahyana, Y., Arum, S., & Lestari, P. (2023). Penerapan Algoritma Density Based Spastial Clustering Algorithm With Noise Untuk Pengelompokkan Penyakit Pasien. Scientific Student Journal for Information, Technology and Science, IV(1).

Santoso, H. (2019). Case Base Reasoning Untuk Mendiagnosis Penyakit Hipertensi Menggunakan Metode Indexing Density Based Spatial Clustering Application With Noise (DBSCAN). ETHOS (Jurnal Penelitian Dan Pengabdian), 7(1), 88–100. https://doi.org/10.29313/ethos.v7i1.4206

Sari, W. J., Melyani, N. A., Arrazak, F., Anahar, M. A. Bin, Addini, E., Al-Sawaff, Z. H., & Manickam, S. (2024). Performance Comparison of Random Forest, Support Vector Machine and Neural Network in Health Classification of Stroke Patients. Public Research Journal of Engineering, Data Technology and Computer Science, 2(1), 34–43. https://doi.org/10.57152/predatecs.v2i1.1119

Sihite, E. K., Rangkuti, Y. M., & Karo-Karo, I. (2024). Pembangunan Webgis Untuk Penderita Gizi Buruk Di Kota Medan Berdasarkan Hasil Clustering Algoritma DBSCAN. SAINTIKOM (Jurnal Sains Manajemen Informatika Dan Komputer), 23, 77–86.

Venketasubramanian, N., Yudiarto, F. L. ;, & Tugasworo, D. (2022). Stroke Burden and Stroke Services in Indonesia. Cerebrovascular Diseases Extra, 12(1), 53–57. https://doi.org/10.1159/000524161

Wijaya, R., Saeed, F., Samimi, P., Albarrak, A. M., & Qasem, S. N. (2024). An Ensemble Machine Learning and Data Mining Approach to Enhance Stroke Prediction. Bioengineering, 11(7). https://doi.org/10.3390/bioengineering11070672

Published

2025-10-31

Issue

Section

METHOMIKA: Jurnal Manajemen Informatika & Komputersisasi Akuntansi