Penerapan Algoritma DBSCAN dalam Mengidentifikasi Risiko Stroke
DOI:
https://doi.org/10.46880/jmika.Vol9No2.pp340-349Keywords:
Clustering, DBSCAN Algorithm, PCA, Risk Factors, StrokeAbstract
Stroke is a serious disease that can cause permanent disability and death. This study applies the DBSCAN algorithm to cluster Stroke risk using a public Kaggle dataset (n = 5,110), which contains demographic and clinical attributes such as age, gender, hypertension, heart disease, body mass index (BMI), glucose levels, and smoking status. Preprocessing steps included median imputation for BMI, categorical encoding, Z-score standardization, and PCA for visualization. Parameter selection was conducted using the k-distance plot and Silhouette evaluation, resulting in ε = 2.5 and min_samples = 3 with a Silhouette Score of 0.2158. The findings indicate that DBSCAN has potential to support Stroke prevention strategies, although further parameter tuning and feature optimization are required to improve clustering quality.
References
Ding, L., Mane, R., Wu, Z., Jiang, Y., Meng, X., Jing, J., Ou, W., Wang, X., Liu, Y., Lin, J., Zhao, X., Li, H., Wang, Y., & Li, Z. (2022). Data-driven clustering approach to identify novel phenotypes using multiple biomarkers in acute ischaemic stroke: A retrospective, multicentre cohort study. EClinicalMedicine.
Hermanto, T. I. S. M. A. (2020). Analisis Data Sebaran Penyakit Menggunakan Algoritma Density Based Spatial Clustering Of Application WIith Noise. Jurnal Sains Komputer Dan Teknologi Informasi, 3, 104–110. https://doi.org/https://doi.org/10.33084/jsakti.v3i1.1775
Hu, Y., Yan, H., Liu, M., Gao, J., Xie, L., Zhang, C., Wei, L., Ding, Y., & Jiang, H. (2024). Detecting cardiovascular diseases using unsupervised machine learning clustering based on electronic medical records. BMC Medical Research Methodology, 24(1). https://doi.org/10.1186/s12874-024-02422-z
Islam, Y., Chowdhury, Md. J. U., & Das, S. C. (2025). Advancing Tabular Stroke Modelling Through a Novel Hybrid Architecture and Feature-Selection Synergy. http://arxiv.org/abs/2505.15844
Kim, J. T., Kim, N. R., Choi, S. H., Oh, S., Park, M. S., Lee, S. H., Kim, B. C., Choi, J., & Kim, M. S. (2022). Neural network-based clustering model of ischemic stroke patients with a maximally distinct distribution of 1-year vascular outcomes. Scientific Reports, 12(1). https://doi.org/10.1038/s41598-022-13636-w
Ma, B., Yang, C., Li, A., Chi, Y., & Chen, L. (2023). A Faster DBSCAN Algorithm Based on Self-Adaptive Determination of Parameters. Procedia Computer Science, 221, 113–120. https://doi.org/10.1016/j.procs.2023.07.017
Ovyawan Herlistiono, I., & Violina, S. (2024). Model Prediksi Risiko Stroke Menggunakan Machine Learning Stroke Risk Prediction Model Using Machine Learning. Journal of Information Technology and Computer Science (INTECOMS), 7(4).
Puspitasari, D. A., Cahyana, Y., Arum, S., & Lestari, P. (2023). Penerapan Algoritma Density Based Spastial Clustering Algorithm With Noise Untuk Pengelompokkan Penyakit Pasien. Scientific Student Journal for Information, Technology and Science, IV(1).
Santoso, H. (2019). Case Base Reasoning Untuk Mendiagnosis Penyakit Hipertensi Menggunakan Metode Indexing Density Based Spatial Clustering Application With Noise (DBSCAN). ETHOS (Jurnal Penelitian Dan Pengabdian), 7(1), 88–100. https://doi.org/10.29313/ethos.v7i1.4206
Sari, W. J., Melyani, N. A., Arrazak, F., Anahar, M. A. Bin, Addini, E., Al-Sawaff, Z. H., & Manickam, S. (2024). Performance Comparison of Random Forest, Support Vector Machine and Neural Network in Health Classification of Stroke Patients. Public Research Journal of Engineering, Data Technology and Computer Science, 2(1), 34–43. https://doi.org/10.57152/predatecs.v2i1.1119
Sihite, E. K., Rangkuti, Y. M., & Karo-Karo, I. (2024). Pembangunan Webgis Untuk Penderita Gizi Buruk Di Kota Medan Berdasarkan Hasil Clustering Algoritma DBSCAN. SAINTIKOM (Jurnal Sains Manajemen Informatika Dan Komputer), 23, 77–86.
Venketasubramanian, N., Yudiarto, F. L. ;, & Tugasworo, D. (2022). Stroke Burden and Stroke Services in Indonesia. Cerebrovascular Diseases Extra, 12(1), 53–57. https://doi.org/10.1159/000524161
Wijaya, R., Saeed, F., Samimi, P., Albarrak, A. M., & Qasem, S. N. (2024). An Ensemble Machine Learning and Data Mining Approach to Enhance Stroke Prediction. Bioengineering, 11(7). https://doi.org/10.3390/bioengineering11070672
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Hani Istiqomah, Khoirun Nisa, Arif Setia Sandi A.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.










