Klasifikasi Pola Konsumsi Energi Rumah Tangga Menggunakan Algoritma Machine Learning untuk Mendukung Implementasi Smart City
Keywords:
Smart City, Household Energy Consumption, Classification, Random Forest, Machine Learning, Energy EfficiencyAbstract
Population growth in urban areas drives a significant increase in household energy consumption. This condition poses a major challenge for the implementation of the smart city concept, particularly in achieving energy efficiency and sustainability. This study aims to classify household energy consumption patterns based on household power consumption data to support intelligent decision-making in urban energy management. The research method includes data preprocessing, data cleaning, and aggregation of daily energy consumption by utilizing key attributes such as Global Active Power, Voltage, Global Intensity, and three sub-metering variables. Consumption pattern categories are formed using the tertile method into three classes: Low, Medium, and High. Several machine learning algorithms are applied to build the classification model, including Logistic Regression, K-Nearest Neighbors (KNN), Random Forest, and Gradient Boosting. The test results show that the Random Forest model with hyperparameter adjustments produces the best performance with an accuracy value of 0.98 and an F1-macro value of 0.98, surpassing other models. These findings indicate that the ensemble learning approach is able to capture the complexity of household energy consumption patterns more effectively than conventional linear models. The contribution of this research lies in the development of a machine learning-based predictive model to support adaptive energy consumption monitoring and control systems in smart city implementations.
References
Amalia, N., & Asmunin. (2024). Optimasi Algoritma Random Forest dengan Hyperparameter Tuning Menggunakan GridSearchCV untuk Prediksi Nasabah Churn pada Industri Perbankan. Manajemen Informasi, 16(1), 1–9.
Aqsha, D. (2025). Perbandingan Kinerja Algoritma Extreme Gradient Boosting dan Random Forest Untuk Prediksi Harga Rumah di Jabodetabek. Jurnal Ilmu Komputer Dan Sistem Informasi, 13. https://doi.org/10.24912/jiksi.v13i1.32863
Asro, A., Chaidir, J., Cahairuddin, C., & Friadi, J. (2025). Evaluasi Kinerja Algoritma Klasifikasi dalam Studi Kasus Prediksi Kelulusan di Universitas XYZ. Zona Teknik: Jurnal Ilmiah, 19(1), 15–22. https://doi.org/10.37776/zt.v19i1.1674
Cintari, N., Alifviansyah, K., Tsabitah, D., Sartono, B., & Firdawanti, A. (2024). Analisis Perbandingan Kinerja Metode Ensemble Bagging dan Boosting pada Klasifikasi Bantuan Subsidi Listrik di Kabupaten/Kota Bogor. The Indonesian Journal of Computer Science, 13. https://doi.org/10.33022/ijcs.v13i6.4537
Fatimah, A., Tania, K. D., Meiriza, A., Studi, P., Informasi, S., Sriwijaya, U., Palembang-prabumulih, J., & Ilir, O. (2025). Analisis Komparatif Model Data Mining Dalam Prediksi Ketepatan. 9(1), 100–108.
Febriani, A., Idris, M., Murdifin, & Wardhana, B. (2025). Penerapan Machine Learning Dalam Optimasi Proses Konversi Biomassa Menjadi Energi.
Hamdhani, M., Purwitasari, D., & Raharjo, A. B. (2022). Identifikasi Profil Konsumsi Enegri Listrik untuk Meningkatkan Pendapatan dengan Klustering. Journal of Information System,Graphics, Hospitality and Technology, 4(2), 62–70. https://doi.org/10.37823/insight.v4i2.232
Maulana Ibrahim, S., & Prasyas, A. (2025). Jurnal Rekayasa Sipil dan Arsitektur (JRSA) Integrasi Teknologi AI dalam Perancangan Smart Building: Studi Implementasi dan Efisiensi Energi. Diterima Februari, 1(1), 2025.
Maulana, T., Astuti, R., & Muhammad Basysyar, F. (2024). Implementasi Algoritma Regresi Linear Untuk Memprediksi Pendapatan Pt Pln Berdasarkan Penggunaan Per Kelompok Pelanggan. JATI (Jurnal Mahasiswa Teknik Informatika), 7(6), 3196–3202. https://doi.org/10.36040/jati.v7i6.8083
Maulidhia, A. N. A., Widyastuti, I. I., Sukarno, F. I., Tsany, R. B. S., & Brian, T. (2025). Implementation of the K-Means Algorithm on Household Electric Load. Jurnal Sistem Telekomunikasi Elektronika Sistem Kontrol Sistem Tenaga Dan Komputer, 5, 17–24. https://ejournal.uniska-kediri.ac.id/index.php/JTECS/article/view/6739
Muhamad Malik Matin, I. (2023). Hyperparameter Tuning Menggunakan GridsearchCV pada Random Forest untuk Deteksi Malware. Multinetics, 9(1), 43–50. https://doi.org/10.32722/multinetics.v9i1.5578
Purba, A. C., & Handhayani, T. (2024). Perbandingan Algoritma K-Means, Affinity Clustering, Dan Minibatch K-Means Untuk Analisis Segmentasi Pasar. Jurnal Ilmiah Komputer Dan Informatika, 13(1), 54–63.
Purnomo, H., Suyono, H., & Hasanah, R. N. (2021). Peramalan Beban Jangka Pendek Sistem Kelistrikan Kota Batu Menggunakan Deep Learning Long Short-Term Memory. Transmisi, 23(3), 97–102. https://doi.org/10.14710/transmisi.23.3.97-102
Rochayati, R., Rahman Abdillah, R., Mauludia, I., & Saputri, E. (2025). Implementasi Algoritma Machine Learning untuk Prediksi Beban Listrik Harian di Wilayah Perkotaan. Prosiding Seminar Nasional Ilmu Matematika Dan Sains, 1, 30–34. https://prosiding.arimsi.or.id/index.php/PROSEMNASIMSI
Roihan, A., Sunarya, P. A., & Rafika, A. S. (2020). Pemanfaatan Machine Learning dalam Berbagai Bidang: Review paper. IJCIT (Indonesian Journal on Computer and Information Technology), 5(1), 75–82. https://doi.org/10.31294/ijcit.v5i1.7951
Suci Amaliah, Nusrang, M., & Aswi, A. (2022). Penerapan Metode Random Forest Untuk Klasifikasi Varian Minuman Kopi di Kedai Kopi Konijiwa Bantaeng. VARIANSI: Journal of Statistics and Its Application on Teaching and Research, 4(3), 121–127. https://doi.org/10.35580/variansiunm31
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Ommi Alfina, M. Safii

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.










