Perbandingan Convolutional Neural Network dan Algoritma Machine Learning Konvensional untuk Klasifikasi Kemiskinan Multidimensional di Indonesia

Authors

  • Ruth Tika Sarwanti Universitas Singaperbangsa Karawang
  • Yuyun Umaidah Universitas Singaperbangsa Karawang

Keywords:

Convolutional Neural Network, Machine Learning, Multidimensional Poverty, Multidimensional Poverty Index, Susenas

Abstract

Multidimensional poverty in Indonesia is a complex phenomenon involving various interconnected social, economic, and structural aspects. Conventional approaches to poverty classification often fail to capture non-linear interaction patterns and spatial dependencies inherent in multidimensional socio-economic data. This research aims to compare the performance of Convolutional Neural Networks (CNN) with conventional machine learning algorithms such as Random Forest and XGBoost in classifying multidimensional poverty in Indonesia. The research method employs a comparative quantitative approach using data from the 2023 National Socio-Economic Survey (Susenas) by BPS, covering 8,000 household observations. The target variable is multidimensional poverty status based on the Multidimensional Poverty Index (MPI) with a 1/3 cutoff. Data was split 70:30 for training and testing, with preprocessing including missing value imputation, one-hot encoding, and Min-Max scaler normalization. The CNN model was designed with a two-convolutional-layer architecture, while Random Forest used 200 decision trees and XGBoost with 200 estimators. Research results demonstrate that CNN provides the best performance with 82.4% accuracy, outperforming Random Forest (80.1%) and XGBoost (81.2%). Important variable analysis reveals that housing infrastructure conditions, household head education level, and sanitation access are key factors in determining multidimensional poverty, providing strategic input for formulating more targeted poverty alleviation policies.

References

Aji, W., & Achruh, A. (2025). Tantangan Globalisasi Teknologi Terhadap Guru di Daerah Terpencil; Sebuah Tinjuan Kritis. Jurnal Ilmiah Multidisipline, 3(5), 542–548. https://doi.org/10.5281/zenodo.15710377

Arnita, Yani, M., Marpaung, F., Hidayat, M., & Widianto, A. (2022). A comparative study of convolutional neural network and k-nearest neighbours algorithms for food image recognition. Journal of Computational Technologies, 27(6), 88–99. https://doi.org/10.25743/ICT.2022.27.6.008

Artha, D. R. P., Dartanto, T., Rani, D., & Artha, P. (2018). The multidimensional approach to poverty measurement in Indonesia: Measurements, determinants and its policy implications. In Journal of Economic Cooperation and Development (Vol. 39). https://www.researchgate.net/publication/331178536

Aulia, L. A., & Wulansari, I. Y. (2020). Pembentukan Indeks Kemiskinan Multidimensi Anak Dan Pemanfaatannya Untuk Pengentasan Kemiskinan Berkelanjutan Di Indonesia Tahun 2017. Seminar Nasional Official Statistics, 2019(1), 336–346. https://doi.org/10.34123/semnasoffstat.v2019i1.222

Budiman, H., Ratna, S., Muflih, M., Syapotro, U., Hamdani, M., Rezqy, M., & Ridha, N. (2024). Classification of Heart Disease Using a Stacking Framework of BiGRU, BiLSTM, and XGBoost. In Journal Of Data Science | (Vol. 2024).

Fauzi, A. S., Runtiningsih, S., & Hidayat, F. (2022). Determinants of Poverty in Indonesia and its Policy Implications, Multidimensional Approach to Measuring Poverty. JOVISHE : Journal of Visionary Sharia Economy, 01(01), 11–23. https://doi.org/10.57255/jovishe.v1i1.xxxx

Hanandita, W., & Tampubolon, G. (2016). Multidimensional Poverty in Indonesia: Trend Over the Last Decade (2003–2013). Social Indicators Research, 128(2), 559–587. https://doi.org/10.1007/s11205-015-1044-0

Handayani, D. N., & Qutub, S. (2025). Penerapan Random Forest Untuk Prediksi Dan Analisis Kemiskinan. RIGGS: Journal of Artificial Intelligence and Digital Business, 4(2), 405–412. https://doi.org/10.31004/riggs.v4i2.512

Kakwani, N., & Son, H. H. (2025). Multidimesional Poverty: A New Perspective on Measurement. Journal of Development Studies. https://doi.org/10.1080/00220388.2025.2530471

Kause, J., & Fithriyah, F. (2024). Analisis Determinan Kemiskinan Multidimensi di Indonesia. Jurnal Riset Ilmu Ekonomi, 4(2), 115–127. https://doi.org/10.23969/jrie.v4i2.98

Liu, Y., Xie, J., Ding, Y., Xu, J., Huang, D., Wang, Y., Chen, S., Hu, Q., Xu, L., & Yang, L. (2025). Dual-Functional Layer Engineering Unlocking Dendrite-Free and High-Performance Zinc Metal Anodes. Advanced Functional Materials, 35(32), 2424526. https://doi.org/https://doi.org/10.1002/adfm.202424526

Nugroho, N. A., & Wijayanto, A. W. (2023). Perbandingan Algoritma Machine Learning dalam Pengklasifikasian Tingkat Kemiskinan di Indonesia Tahun 2021 1.

Salam, A., Pratomo, D. S., & Saputra, P. M. A. (2022). Analisis kemiskinan pada rumah tangga di Jawa Timur melalui pendekatan multidimensi dan moneter. Jurnal Kependudukan Indonesia, 16(2), 127. https://doi.org/10.14203/jki.v16i2.480

Sarmadi, H., Rögnvaldsson, T., Carlsson, N. R., Ohlsson, M., Wahab, I., & Hall, O. (2023). Towards Explaining Satellite Based Poverty Predictions with Convolutional Neural Networks. https://doi.org/10.1109/DSAA60987.2023.10302541

Sarmadi, H., Wahab, I., Hall, O., Rögnvaldsson, T., & Ohlsson, M. (2024). Human bias and CNNs’ superior insights in satellite-based poverty mapping. Scientific Reports, 14(1). https://doi.org/10.1038/s41598-024-74150-9

Solís-Salazar, M., & Madrigal-Sanabria, J. (2022). Una propuesta de aprendizaje automático para predecir la pobreza. Revista Tecnología En Marcha. https://api.semanticscholar.org/CorpusID:252649626

Zahrawati, F. (2020). Pembebasan Jerat Feminisasi Kemiskinan (Vol. 2, Issue 1).

Zora, E., Purwanti, M., & Aji, K. P. (2025). Paradoks Hukum Keimigrasian Indonesia: Posisi Korban Yang Terlibat Dalam Praktik Penyelundupan Manusia.

Published

2025-10-31

Issue

Section

METHOMIKA: Jurnal Manajemen Informatika & Komputersisasi Akuntansi