Analisis Sentimen Orang Tua Murid Baru Terhadap SMPN 40 Samarinda pada SPMB 2025 Menggunakan Algoritma Naïve Bayes

Authors

  • Resifa Ananta Putra STMIK Widya Cipta Dharma
  • Heny Pratiwi STMIK Widya Cipta Dharma
  • Ahmad Abul Khair STMIK Widya Cipta Dharma

Keywords:

Naïve Bayes, Sentiment Analysis, SMPN 40 Samarinda, SPMB, TF-IDF

Abstract

The New Student Admission Selection (SPMB) plays an essential role in ensuring equal educational access in Indonesia. However, during SPMB 2025 at SMPN 40 Samarinda, many candidates living nearby did not choose the school as their first preference, suggesting that perceptions and school image significantly influenced their choices. This study aims to analyze new student parents' sentiments toward SMPN 40 Samarinda using the Naïve Bayes algorithm combined with the Term Frequency–Inverse Document Frequency (TF-IDF) technique. Data were collected from 42 respondents and categorized into positive, neutral, and negative sentiments. The model achieved an accuracy of 86%, a precision of 56%, and a recall of 63%, showing that Naïve Bayes performs effectively on limited data, though it is less sensitive to minority classes. The analysis revealed that most parents expressed positive perceptions, indicating growing trust that SMPN 40 Samarinda can support students’ character development. These findings emphasize the importance of strengthening school image and service quality while highlighting the potential of machine learning–based sentiment analysis as a data-driven approach to understanding educational perceptions.

References

Fahrezi, I. A., & Verdikha, N. A. (2024). Analisis sentimen Twitter atas isu hak angket menggunakan pembobotan TF-IDF dan algoritma SVM. Sci-Tech Journal, 3(2), 179–192.

Fitriani, R. D., Yasin, H., & Tarno, T. (2021). Penanganan klasifikasi kelas data tidak seimbang dengan Random Oversampling pada Naive Bayes (Studi kasus: Status peserta KB IUD di Kabupaten Kendal). Jurnal Gaussian, 10(1), 11–20.

Wibowo, M. I. A. G, & Pratama, I. (2024). Analisis sentimen ulasan aplikasi identitas kependudukan digital menggunakan metode Support Vector Machine. Jurnal Teknologi dan Sistem Informasi Bisnis, 6(4), 715–722. https://doi.org/10.47233/jteksis.v6i4.1552

Herlinawati, N., Yuliani, Y., Faizah, S., Gata, W., & Samudi, S. (2020). Analisis sentimen Zoom Cloud Meetings di Play Store menggunakan Naïve Bayes dan Support Vector Machine. CESS (Journal of Computer Engineering and System Sciences), 5(2), 293. https://doi.org/10.24114/cess.v5i2.18186

Husaini, A. P., & Lisdiyanto, A. (2024). Sistem prediksi penjualan produk APD terlaris di PT A3 Karunia Sidoarjo menggunakan metode Naïve Bayes. Jurnal Teknologi dan Sistem Informasi Bisnis, 6(2), 431–437. https://doi.org/10.47233/jteksis.v6i2.1266

Khair, A. A., Pratiwi, H., & Saputra, N. J. (2024). Penerapan algoritma K-Nearest Neighbor untuk klasifikasi penerima beasiswa pada STMIK Widya Cipta Dharma.

Lesmana, L., Mukrodin, & Nabyla, F. (2020). Analisis sentimen pengguna Twitter terhadap kebijakan sistem zonasi PPDB menggunakan algoritma Multinomial Naïve Bayes. Jurnal Sistem Informasi dan Teknologi Peradaban (JSITP), 1(1), 24–28.

Minardi, J., et al. (2024). Analysis of sentiment towards educational services in modern Islamic boarding schools using the Naïve Bayes method. Scientific Journal of Informatics, 11(4).

Putra, H. D., Khairani, L., & Hastari, D. (2023). Comparison of Naïve Bayes Classifier and Support Vector Machine algorithms for classifying student mental health data. In SENTIMAS: Seminar Nasional Penelitian dan Pengabdian Masyarakat (pp. 120–125).

Santoso, H., Armansyah, A., & Desliani, D. (2022). Analisis sentimen mahasiswa terkait pembelajaran tatap muka menggunakan metode Naïve Bayes Classifier. Techno.com, 21(3), 644–654.

Suryani, L., Afgani, M. W., & Afriantoni, A. (2025). Optimalisasi penerimaan peserta didik baru melalui pendekatan manajemen strategi di Sekolah Dasar Negeri 52 Prabumulih. Indonesian Research Journal on Education, 5(2), 1360–1368.

Syam, A. A., Hardy, G. M., Salim, A., Surianto, D. F., & Fajar, M. B. (2024). Analisis teknik preprocessing pada sentimen masyarakat terkait konflik Israel-Palestina menggunakan Support Vector Machine. JIPI (Jurnal Ilmiah Penelitian dan Pembelajaran Informatika), 9(3), 1464–1472. https://doi.org/10.29100/jipi.v9i3.5527

Tharwat, A. (2021). Classification assessment methods. Applied Computing and Informatics, 17(1), 168–192.

Triyono, A., Faqih, A., Dwilestari, G., & Fathurrohman, F. (2025). Implementation of the Naïve Bayes method in sentiment analysis of Spotify application reviews. Journal of Artificial Intelligence Engineering and Applications, 4(2).

Wibowo, E., & Pratama, I. (2024). Analisis sentimen terhadap ulasan hotel melalui platform Google Review menggunakan metode stacking. Jurnal Teknologi dan Sistem Informasi Bisnis, 6(4), 774–784. https://doi.org/10.47233/jteksis.v6i4.1475

Yutika, C. H., Adiwijaya, A., & Al Faraby, S. (2021). Analisis sentimen berbasis aspek pada review Female Daily menggunakan TF-IDF dan Naïve Bayes. Jurnal Media Informatika Budidarma, 5(2), 422–430.

Zakaria, M. A., Pratiwi, H., & Saad, M. I. (2024). Sistem pakar diagnosis penanganan pasca panen kelapa sawit dengan metode Naïve Bayes berbasis web. Sebatik, 28(2).

Published

2025-10-31

Issue

Section

METHOMIKA: Jurnal Manajemen Informatika & Komputersisasi Akuntansi