Penerapan Algoritma Decision Tree C4.5 Pada Test MBTI Berbasis Web

Studi Kasus: Universitas Katolik Musi Charitas

Authors

  • Redempta Rista Elvira Universitas Katolik Musi Charitas
  • Fery Herdiatmoko Universitas Katolik Musi Charitas

Keywords:

MBTI, Decision Tree C4.5, Classification, Web-Based System, Higher Education

Abstract

A major problem in student personality assessment is the manual process of completing and interpreting test results, which leads to subjective bias and delays in counseling services. To address this, this study applies the Decision Tree C4.5 algorithm to a web-based MBTI test to produce an objective and efficient personality type classification. This study discusses the implementation of the Decision Tree C4.5 algorithm in a web-based Myers-Briggs Type Indicator (MBTI) test to classify students’ personality types at Musi Charitas Catholic University. The research objectives are (1) to apply and evaluate the Decision Tree C4.5 algorithm in personality classification based on MBTI test results, and (2) to develop a counseling support system capable of providing automatic, objective, and easy-to-understand classification results. The research method employed is development research (Research and Development) using the Waterfall model, including requirement analysis, system design, implementation, testing, and evaluation. The C4.5 algorithm was implemented to construct a classification model based on decision rules, which was then integrated into the web application. System testing using Black-Box and White-Box methods ensured that the system operates according to specifications and that all logical paths have been tested. Evaluation results indicate a classification accuracy of approximately 86% with consistent precision, recall, and F1-score values, demonstrating the effectiveness of the C4.5 algorithm in personality type classification. The system improves efficiency, accessibility, and objectivity in personality assessment compared to manual methods and can support sustainable student counseling and development services.

References

Alfian, Andryana, S., & Sholihati, I. D. (2021). Application of C4.5 Algorithm in Classification of Personality Types Based on KSPM Personality Theory. JATISI (Jurnal Teknik Informatika Dan Sistem Informasi), 8(3), 1077–1089. https://doi.org/10.35957/JATISI.V8I3.1029

Dennis, A., Wixom, B., & Tegarden, D. (2015). Systems analysis and design: An object-oriented approach with UML (8th ed.). John Wiley & Sons.

Dogan, A., & Birant, D. (2021). Machine learning and data mining in manufacturing. Expert Systems with Applications, 166, 114060. https://doi.org/10.1016/J.ESWA.2020.114060

Harryanto, F. F., & Hansun, S. (2017). Penerapan Algoritma C4.5 untuk Memprediksi Penerimaan Calon Pegawai Baru di PT Wise. JATISI (Jurnal Teknik Informatika Dan Sistem Informasi), 3(2), 95–103. https://doi.org/10.35957/JATISI.V3I2.71

Hartama, D., Daya, K., & Sianipar, R. (2022). Penerapan Algoritma C4.5 Untuk Analisa Tingkat Keberhasilan Mahasiswa Dalam Pembelajaran Praktikum di Masa Pandemi. Journal of Computer System and Informatics (JoSYC), 4(1), 128–134. https://doi.org/10.47065/JOSYC.V4I1.2584

Huang, Y., Liu, H., Chi, M., Meng, S., & Wang, W. (2025). How digital therapeutic alliances influence the perceived helpfulness of online mental health Q&A: An explainable machine learning approach. Digital Health, 11. https://doi.org/10.1177/20552076251333480

Iddrus, I., & Sari, D. W. (2023). Penerapan Data Mining Menggunakan Algoritma Decision Tree C4.5 Untuk Memprediksi Mahasiswa Drop Out Di Universitas Wiraraja. Journal of Advanced Research in Informatics, 1(2), 51–57. https://doi.org/10.24929/JARS.V1I02.2684

Ikhram, F., & Ramsari, N. (2023). Penggunaan Indikator Myers-Briggs Type Indicator (MBTI) Untuk Penempatan Karyawan Memanfaatkan Sistem Pakar Metode Forward Chaining. Jurnal Sosial, Ekonomi Dan Humaniora, 2(1), 1–13. https://doi.org/10.56244/SOSIERA.V2I1.670

Limantara, C., & Nababan, D. (2019). Klasifikasi Kepribadian Menggunakan Algoritma Decision Tree Berdasarkan Ten Item Personality Inventory. Jurnal CoreIT: Jurnal Hasil Penelitian Ilmu Komputer Dan Teknologi Informasi, 5(1), 8–12. https://doi.org/10.24014/coreit.v5i1.6236

London, M., Sessa, V. I., & Shelley, L. A. (2023). Developing Self-Awareness: Learning Processes for Self- and Interpersonal Growth. Annual Review of Organizational Psychology and Organizational Behavior, 10, 261–288. https://doi.org/10.1146/ANNUREV-ORGPSYCH-120920-044531/1

Maulana, I. T. (2022). Penerapan Metode Sdlc (System Development Life Cycle) Waterfall Pada E-Commerce Smartphone. Jurnal Ilmiah Sistem Informasi Dan Ilmu Komputer, 2(2), 1–6. https://doi.org/10.55606/JUISIK.V2I2.162

Nuraini, B. (2023). Strategi Meningkatkan Kinerja Pegawai: Pendekatan Terpadu Kompetensi, Motivasi, dan Budaya Organisasi. Asadel Liamsindo Teknologi.

Nuraini, R., Al Hakim, R. R., Lisnawati, T., & Fariati, W. T. (2021). Pengembangan Sistem Klasifikasi Tipe Kepribadian Siswa Secara Psikologis dengan Algoritma Decision Tree C.45. Building of Informatics, Technology and Science (BITS), 3(3), 220–227. https://doi.org/10.47065/bits.v3i3.1045

Rosa, A., & Shalahuddin, M. (2016). Rekayasa Perangkat Lunak: Terstruktur dan Berorientasi Objek. Informatika.

Selvida, D., Pulungan, A. F., & Elveny, M. (2024). Data mining decision tree algorithm C4.5 classification of student personality characteristics. AIP Conference Proceedings, 2987(1). https://doi.org/10.1063/5.0199411

Sukendar, M. U., & Susena, E. (2022). User Interface Website as a Digital Personal Branding. International Journal of Computer and Information System (IJCIS), 3(3), 137–141. https://doi.org/10.29040/IJCIS.V3I3.88

Tjahjadi, J. L., Wahyuningsih, Y., Darma, P., Tanuwijaya, P., & Kristianto, R. P. (2023). Forward Chaining Algorithm on Informatics Graduate Job Recommendation System Based on MBTI Test. IAIC International Conference Series, 4(1), 122–131. https://doi.org/10.34306/CONFERENCESERIES.V4I1.641

Published

2025-10-31

Issue

Section

METHOMIKA: Jurnal Manajemen Informatika & Komputersisasi Akuntansi