Pendekatan Transfer Learning dan SMOTE untuk Klasifikasi Kanker Kulit pada Imbalanced Dataset
Keywords:
Skin Cancer, SMOTE, DenseNet121, EfficientNetB0, MobileNetV2Abstract
Skin cancer is one of the most commonly diagnosed cancers worldwide, with the incidence increasing every year. While early detection is a key factor in reducing skin cancer mortality, conventional methods such as biopsy have limitations in terms of cost and invasiveness. This research applies a deep learning based approach for skin cancer classification with Convolutional Neural Networks (CNN) model using transfer learning method. 3 CNN architectures namely MobileNetV2, EfficientNetB0, and DenseNet121 are used to evaluate the performance of the model in detecting skin cancer. One of the main challenges in this research is the imbalanced dataset, which can cause bias in classification. The Synthetic Minority Over-Sampling Technique (SMOTE) was applied to improve the representation of minority classes. The dataset used comes from Kaggle and consists of 2,357 images classified into 9 skin cancer categories. The results show that the transfer learning method combined with SMOTE can significantly improve the accuracy of the model, especially in detecting classes with a smaller number of samples. The evaluation was conducted using accuracy, precision, recall, and f1-score metrics. This research is expected to contribute to the development of an artificial intelligence-based skin cancer detection system that is more accurate, efficient, and can be used as a tool for medical personnel in early diagnosis of skin cancer.
References
Agustina, R., Magdalena, R., & Pratiwi, N. K. C. (2022). Klasifikasi Kanker Kulit menggunakan Metode Convolutional Neural Network dengan Arsitektur VGG-16. ELKOMIKA: Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, & Teknik Elektronika, 10(2), 446. https://doi.org/10.26760/elkomika.v10i2.446
Ali, K., Shaikh, Z. A., Khan, A. A., & Laghari, A. A. (2022). Multiclass skin cancer classification using EfficientNets – a first step towards preventing skin cancer. Neuroscience Informatics, 2(4), 100034. https://doi.org/10.1016/j.neuri.2021.100034
Bagus Nurhannudin. (2024). Perancangan Sistem Deteksi Tingkat Kemiringan Jalan Sederhana Dengan Metode Otsu Thresholding Menggunakan Colab. Router : Jurnal Teknik Informatika Dan Terapan, 2(3), 137–146. https://doi.org/10.62951/router.v2i3.156
Bechelli, S., & Delhommelle, J. (2022). Machine Learning and Deep learning Algorithms for Skin Cancer Classification from Dermoscopic Images. Bioengineering, 9(3). https://doi.org/10.3390/bioengineering9030097
Dartiko, F., Pradana, R. J., Sari, R. E., Syahputra, W., & Oktoeberza, W. K. (2024). Klasifikasi Kanker Kulit Berbasis CNN dengan Metode Hybrid Preprocessing. Medika Teknika : Jurnal Teknik Elektromedik Indonesia, 5(2), 124–132. https://doi.org/10.18196/mt.v5i2.22675
Duman, E., & Tolan, Z. (2021). Comparing Popular CNN Models for an Imbalanced Dataset of Dermoscopic Images. Computer Science. https://doi.org/10.53070/bbd.990574
Fajri, F. P. Al. (2024). Perancangan Model Deep learning untuk Penerjemah Bahasa Isyarat SIBI menggunakan Transfer Learning MobileNetV2. Sekolah Tinggi Teknologi Terpadu Nurul Fikri.
Indraswari, R., Herulambang, W., & Rokhana, R. (2022). Deteksi Penyakit Mata Pada Citra Fundus Menggunakan Convolutional Neural Network (CNN). Techno. Com, 21(2).
Kurniawan, W. A., & Salam, A. (2024). Penggunaan Feature Space SMOTE Untuk Mengurangi Overfitting Akibat Imbalance Dataset. Techno.Com, 23(2), 328–337. https://doi.org/10.62411/tc.v23i2.10215
Rahman, Z., & Ami, A. M. (2020). A transfer learning based approach for skin lesion classification from imbalanced data. Proceedings of 2020 11th International Conference on Electrical and Computer Engineering, ICECE 2020, 65–68. https://doi.org/10.1109/ICECE51571.2020.9393155
Ramdhana, A. C., & Pratiwi, N. (2023). Perbandingan Kinerja Model Convolutional Neural Network pada Klasifikasi Kanker Kulit. Edumatic: Jurnal Pendidikan Informatika, 7(2), 197–206. https://doi.org/10.29408/edumatic.v7i2.19823
Saputra, T., Ezar, M., & Rivan, A. (2023). Analisis Performa ResNet-152 dan AlexNet dalam Klasifikasi Jenis Kanker Kulit. STRING (Satuan Tulisan Riset Dan Inovasi Teknologi), 8(1), 75–84. https://challenge.isic-
Saputro, R. R., Junaidi, A., & Saputra, W. A. (2022). Klasifikasi Penyakit Kanker Kulit Menggunakan Metode Convolutional Neural Network (Studi Kasus: Melanoma). Data Institut Teknologi Telkom Purwokerto, 2(1), 52–57.
Septhya, D., Rahmaddeni, Susanti, & Agustin. (2024). Penerapan Algoritma Convolutional Neural Network Untuk Klasifikasi Penyakit Kanker Kulit. The Indonesian Journal of Computer Science, 13(4), 6590–6600. https://doi.org/10.33022/ijcs.v13i4.4262
Subagio, M. M., Bhakti, M. S., Yulestiono, A. Y., & Sari, A. P. (2024). Perbandingan Kinerja Metode Convolutional Neural Network (CNN) dan VGG-16 dalam Klasifikasi Rambu Lalu Lintas. Jurnal Mahasiswa Teknik Informatika, 3(2), 79–87. https://doi.org/10.35473/jamastika.v3i2.3361
Wedayani, N., Putri R, N. A., & Hidajat, D. (2022). Edukasi Tentang Pengenalan Tanda Gejala, Pencegahan dan Penanganan Kanker Kulit Sebagai Dampak Paparan Sinar Matahari dan Penggunaan Kosmetik Berbahan Kimia Berbahaya di Poli Kulit Rumah Sakit Akademik Universitas Mataram. Jurnal Pengabdian Magister Pendidikan IPA, 5(3), 223–226. https://doi.org/10.29303/jpmpi.v5i3.2133
World Health Organization. (2022, February 3). Cancer. https://www.who.int/news-room/fact-sheets/detail/cancer
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Lutviana Lutviana

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.










