Akurasi K-Means dengan Menggunakan Cluster dan Titik Grid Terbaik pada Pemetaan Grid Interatif K-Means

Authors

  • Johanes Terang Kita Perangin Angin STMIK TIME
  • Ari Rizkita Universitas Efarina
  • Robet Robet STMIK TIME
  • Octara Pribadi STMIK TIME

Keywords:

K-Means, Centroid, Grid Mapping K-Means, Iterative K-Means, Iterative Grid Mapping K-Means

Abstract

Traditional K-Means face 2 (two) main problems, namely: Determination of Initial Centroid and poor initial cluster. Determining the initial centroid using random numbers is one of the main problems in classical K-Means which results in low accuracy and long computation time. Likewise, determining the good centroid of each cluster without being accompanied by a process of paying attention to the performance of each cluster can also cause the accuracy value obtained is not good. This study will contribute to how the performance obtained by determining a good initial centroid is combined with the use of a good cluster. Determination of a good initial centroid is done by using the K-Means Grid Mapping which divides the determination of the centroid into several Grid Points. The result of this research is a combination of Iterative K-Means with Grid Mapping K-Means to become Iterative Grid Mapping K-Means which will get a good initial centroid and also a good cluster shown in the table of iris and abalone, comparison of the variables in the iris and abalone affecting the best cluster as a result.

References

Angin, J. T. K. P., Johan, Sukiman, Sugianto, Simarmata, B. R., & Suharjito. (2020). Face Recognition Application with the Complete Kernel Fisher Discriminant (CKFD) Method. MECnIT 2020 - International Conference on Mechanical, Electronics, Computer, and Industrial Technology, 359–364. https://doi.org/10.1109/MECNIT48290.2020.9166682

Celebi, M. E., Kingravi, H. A., & Vela, P. A. (2013). A comparative study of efficient initialization methods for the k-means clustering algorithm. Expert Systems with Applications, 40(1), 200–210. https://doi.org/10.1016/j.eswa.2012.07.021

Esnault, C., Rollot, M., Guilmin, P., & Zucker, J.-D. (n.d.). Qluster: An easy-to-implement generic workflow for robust clustering of health data. Retrieved March 11, 2025, from https://www.kaggle.com/sulianova/cardiovascular-disease-dataset?select=cardio

Ismkhan, H. (2018). I-k-means−+: An iterative clustering algorithm based on an enhanced version of the k-means. Pattern Recognition, 79, 402–413. https://doi.org/10.1016/J.PATCOG.2018.02.015

Ma, E. W. M., & Chow, T. W. S. (2004). A new shifting grid clustering algorithm. Pattern Recognition, 37(3), 503–514. https://doi.org/10.1016/J.PATCOG.2003.08.014

Sajidha, S. A., Chodnekar, S. P., & Desikan, K. (2021). Initial seed selection for K-modes clustering – A distance and density based approach. Journal of King Saud University - Computer and Information Sciences, 33(6), 693–701. https://doi.org/10.1016/j.jksuci.2018.04.013

Xu, T. S., Chiang, H. D., Liu, G. Y., & Tan, C. W. (2017). Hierarchical K-means Method for Clustering Large-Scale Advanced Metering Infrastructure Data. IEEE Transactions on Power Delivery, 32(2), 609–616. https://doi.org/10.1109/TPWRD.2015.2479941

Zhu, E., & Ma, R. (2018). An effective partitional clustering algorithm based on new clustering validity index. Applied Soft Computing Journal, 71, 608–621. https://doi.org/10.1016/J.ASOC.2018.07.026

Published

2025-04-30

Issue

Section

METHOMIKA: Jurnal Manajemen Informatika & Komputersisasi Akuntansi