Analisis Pengaruh Variasi Nilai P Pada Metode Minkowski Distance dalam Menentukan Kemiripan Abstrak Skripsi
Keywords:
Minkowski Distance, Similarity Analysis, Preprocessing, Thesis Abstract, Text MiningAbstract
The Computer Science Study Program of Universitas Methodist Indonesia is faced with the challenge of verifying the authenticity of student theses, which is still done manually. This study applies the Minkowski Distance method to analyze the level of similarity of thesis abstracts using one hundred samples. The preprocessing stage is carried out through five systematic steps: cleansing to remove non-alphabetic characters, case folding for letter standardization, tokenizing for text splitting, filtering for stopword elimination, and stemming to obtain root words, resulting in word vectors that are analyzed. The Minkowski Distance method is implemented with three parameter variations, P = 3, P = 5, and P = 7, where the selection of parameters is based on differences in sensitivity to vector dimensions; the higher the P value, the greater the emphasis on significant differences between dimensions. The test results show that the parameter P = 7 provides the most optimal similarity measurement with the smallest distance of 3.84 for documents with the highest similarity. These findings contribute to the development of a more effective similarity detection system to maintain academic integrity.
References
Ahmad, I., Borman, R. I., Caksana, G. G., & Fakhrurozi, J. (2021). Implementasi String Matching Dengan Algoritma Boyer-Moore Untuk Menentukan Tingkat Kemiripan Pada Pengajuan Judul Skripsi/Ta Mahasiswa (Studi Kasus: Universitas Xyz). SINTECH (Science and Information Technology) Journal, 4(1), 53–58. https://doi.org/10.31598/sintechjournal.v4i1.699
Catur, W., Tulloh, R., & Wijayanti, D. E. (2023). Identification of fingerprint image with Minkowski distance algorithm approach. 3(2), 69–78.
Euclidean, P. J., & Dalam, D. A. N. C. (2024). Perbandingan jarak euclidean, cityblock, minkowski, canberra, dan chebyshev dalam sistem temu kembali citra batik. 12(3).
Hutapea, M. I., & Silalahi, A. P. (2023). Moderna’s Vaccine Using the K-Nearest Neighbor (KNN) Method: An Analysis of Community Sentiment on Twitter. Jurnal Penelitian Pendidikan IPA, 9(5), 3808–3814. https://doi.org/10.29303/jppipa.v9i5.3203
Kambey, G. E. I., Sengkey, R., & Jacobus, A. (2020). Penerapan Clustering pada Aplikasi Pendeteksi Kemiripan Dokumen Teks Bahasa Indonesia. Jurnal Teknik Informatika, 15(2), 75–82.
Kurnia Aini, S. (2022). Perancangan Sistem Pendukung Keputusan Terhadap Pendeteksi Plagiarisme Judul Skripsi. Teknologipintar.Org, 2(2), 1.
Kurniana, I. R., Muhima, R.R., Wardana, S., Hakimah, M. (2021). Penerapan Algoritma K-Means Untuk Pengelompokan Topik Dokumen Studi Kasus:Dokumen Abstrak Skripsi Jurusan Teknik Informatika ITATS Kurniana,. 1, 219–224.
Lindang, D. N., Muniar, A. Y., Halid, A., Muhajirin, M., & Amiruddin, A. (2022). Sistem Penentuan Kemiripan Antar Skripsi Menggunakan Metode Cosine Similarity Pada Perpustakaan. Sntei, 321–324.
Risparyanto, A. (2020). Turnitin Sebagai Alat Deteksi Plagiarisme. UNILIB: Jurnal Perpustakaan, 11(2), 126–135. https://doi.org/10.20885/unilib.vol11.iss2.art5
Vendyansyah, N., & Pranoto, Y. A. (2021). Perancangan dan Pembuatan Aplikasi untuk Mendeteksi Kemiripan Jawaban Menggunakan Cosine Similarity. Jurnal Teknika (Jurnal Fakultas Teknik Universitas Islam Lamongan), 13(1), 23–28.
Widaningrum, I., Mustikasari, D., Arifin, R., Tsaqila, S. L., & Fatmawati, D. (2022). Algoritma Term Frequency-Inverse Document Frequency (TF-IDF) dan K-Means Clustering Untuk Menentukan Kategori Dokumen. Prosiding Seminar Nasional Sistem Informasi Dan Teknologi (SISFOTEK), 145–149.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Harlen Gilbert Simanullang, Arina Prima Silalahi, Nadyarni Natalis Caesarin Duha

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.










