Meningkatkan Performa Ulasan Berbahasa Indonesia dengan Spelling Corrector Peter Norvig dan Pelabelan SentiStrength_id
Keywords:
Sentiment Analysis, SentiStrength_id, Support Vector Machine, Web Scraping, Peter NorvigAbstract
Digital transformation is driven by the increasing number of internet and mobile phone users in Indonesia, including public services such as the PLN Mobile application. The purpose of this study is to evaluate user sentiment towards PLN Mobile application reviews and find gaps between user ratings and reviews. Through web scraping on Google Play Store, with a total review data of 11,004 reviews between January 2022 and December 2023. During the preprocessing step, SentiStrength_id was used as the labeling approach, and Support Vector Machine was used for modeling. A spelling corrector using Peter Norvig was applied to correct spelling issues. The accuracy of sentiment analysis was much better with this procedure, reaching 82% at a data split ratio of 90:10. The percentage of sentiment obtained was 16.5% negative, 16.1% neutral, and 67.4% positive. The percentage of mismatched user ratings and reviews was 23.1% for negative reviews, 4.5% for neutral, and 72.49% for positive reviews.
References
Abdillah, W. F., Premana, A., & Herdian Bhakti, R. M. (2021). Analisis Sentimen Penanganan Covid-19 Dengan Support Vector Machine: Evaluasi Leksikon Dan Metode Ekstraksi Fitur. Jurnal Ilmiah Intech : Information Technology Journal of UMUS, 3(2), 160–170.
Ahdiat, A. (2023, August 8). 67% Penduduk Indonesia Punya Handphone pada 2022, Ini Sebarannya. DataBoks. https://databoks.katadata.co.id/datapublish/2023/03/08/67-penduduk-indonesia-punya-handphone-pada-2022-ini-sebarannya
Alfred, R., & Teoh, R. W. (2019). Improving topical social media sentiment analysis by correcting unknown words automatically. Communications in Computer and Information Science, 937, 299–308. https://doi.org/10.1007/978-981-13-3441-2_23
Annur, C. M. (2023, September 9). Proporsi Penggunaan Internet Lewat Ponsel RI Lebih Tinggi dari Rerata Dunia. DataBoks. https://databoks.katadata.co.id/datapublish/2023/09/22/proporsi-penggunaan-internet-lewat-ponsel-ri-lebih-tinggi-dari-rerata-dunia
Asri, Y., Suliyanti, W. N., Kuswardani, D., & Fajri, M. (2022). Pelabelan Otomatis Lexicon Vader dan Klasifikasi Naive Bayes dalam menganalisis sentimen data ulasan PLN Mobile. PETIR, 15(2), 264–275. https://doi.org/10.33322/petir.v15i2.1733
Aulia, B., Utomo, P. E. P., Khaira, U., & Suratno, T. (2021). Analisis Sentimen Tagar #IndonesiaTerserah Di Masa Covid-19 Menggunakan Metode Sentistrength. Jurnal Komputer Dan Informatika, 9(2), 207–213. https://doi.org/10.35508/jicon.v9i2.4275
Ependi, U., Aliya, S., & Wibowo, A. (2023). Sentiment Analysis of Covid-19 Handling in Indonesia Based on Lexicon Weighting. Jurnal Sisfokom (Sistem Informasi Dan Komputer), 12(1), 76–82. https://doi.org/10.32736/sisfokom.v12i1.1615
Fatihah Rahmadayana, & Yuliant Sibaroni. (2021). Sentiment Analysis of Work from Home Activity using SVM with Randomized Search Optimization. Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 5(5), 936–942. https://doi.org/10.29207/resti.v5i5.3457
Fortune Indonesia 100. (2023). Fortune Indonesia. https://www.fortuneidn.com/fortune-indonesia-100
Handayani, Y., Hakim, A. R., & Muljono. (2020). Sentiment analysis of Bank BNI user comments using the support vector machine method. Proceedings - 2020 International Seminar on Application for Technology of Information and Communication: IT Challenges for Sustainability, Scalability, and Security in the Age of Digital Disruption, ISemantic 2020, 202–207. https://doi.org/10.1109/iSemantic50169.2020.9234230
Haryalesmana Wahid, D. (2016). Peringkasan Sentimen Esktraktif di Twitter Menggunakan Hybrid TF-IDF dan Cosine Similarity. IJCCS, 10(2), 207–218.
Ilmawan, L. B., & Mude, M. A. (2020). Perbandingan Metode Klasifikasi Support Vector Machine dan Naïve Bayes untuk Analisis Sentimen pada Ulasan Tekstual di Google Play Store. ILKOM Jurnal Ilmiah, 12(2), 154–161. https://doi.org/10.33096/ilkom.v12i2.597.154-161
Khaira, U., Johanda, R., Utomo, P. E. P., & Suratno, T. (2020). Sentiment Analysis Of Cyberbullying On Twitter Using SentiStrength. Indonesian Journal of Artificial Intelligence and Data Mining, 3(1), 21. https://doi.org/10.24014/ijaidm.v3i1.9145
Kulkarni, A., & Shivananda, A. (2019). Natural language processing recipes: Unlocking text data with machine learning and deep learning using python. In Natural Language Processing Recipes: Unlocking Text Data with Machine Learning and Deep Learning using Python. Apress Media LLC. https://doi.org/10.1007/978-1-4842-4267-4
Kusuma, A. T. A., & Ratnasari, C. I. (2023). Comparison Of Spell Correction In Bahasa Indonesia: Peter Norvig, LSTM, And N-Gram. JIKO (Jurnal Informatika Dan Komputer), 6(3), 214–220. https://doi.org/10.33387/jiko.v6i3.7072
Liu, B. (2010). Sentiment Analysis and Subjectivity.
M Isa, S. (2017, October 4). Sentiment Analysis Approaches and Methods. Binus University Graduate Program . https://mti.binus.ac.id/2017/10/04/1900/
Malik Iryana, T., & Pandu Adikara, P. (2021). Analisis Sentimen Masyarakat Terhadap Mass Rapid Transit Jakarta Menggunakan Metode Naïve Bayes Dengan Normalisasi Kata. Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer, 5(6), 2548–2964. http://j-ptiik.ub.ac.id
Martin, R., Santun Naga, D., & Christanti Mawardi, V. (2021). Penggunaan Spelling Correction Dengan Metode Peter Norvig Dan N-Gram.
Mutammiah, Sujaini, H., & Nyoto, R. D. (2017). Analisis Perbandingan Metode Spelling Corrector Peter Norvig dan Spelling Checker BK-Trees pada Kata Berbahasa Indonesia. Jurnal Sistem Dan Teknologi Informasi, 5.
Saefillah, C. A. (2023, April 6). Fungsi & Tujuan Mobile Application Development Pada Bisnis. Optify. https://www.optify.co.id/website-development/fungsi-tujuan-mobile-application-development-pada-bisnis#:~:text=Pengembang%20aplikasi%20mobile%20bertujuan%20untuk,memberikan%20pengalaman%20pengguna%20yang%20optimal.
Sari, S., Utomo, P., Khaira, U., & Suratno, T. (2021). Analisis Sentimen Terhadap Komentar Beauty Shaming Di Media Sosial Twitter Menggunakan Algoritma SentiStrength. IJIRSE: Indonesian Journal of Informatic Research and Software Engineering, 1, 71–78.
Sasmoko, Prof. Dr. I. M. P. (2020, December 4). Membangun Aplikasi Mobile Populer Oleh Memanfaatkan Umpan Balik Pengguna. Binus University Research Interest Group. https://research.binus.ac.id/edutech/2020/12/membangun-aplikasi-mobile-populer-oleh-memanfaatkan-umpan-balik-pengguna/
Sianipar, R., & Setiawan, E. B. (2015). Pendeteksian Kekuatan Sentimen Pada Teks Tweet Berbahasa Indonesia Menggunakan Sentistrength.
Simanjuntak, M. S., Sujaini, H., & Safriadi, N. (2018). Spelling Corrector Bahasa Indonesia dengan Kombinasi Metode Peter Norvig dan N-Gram. JEPIN (Jurnal Edukasi Dan Penelitian Informatika, 4.
Suyanto. (2018). Machine Learning Tingkat Dasar dan Lanjut, Edisi 2 (2nd ed.).
Thomas, V. W. D., & Rumaisa, F. (2022). Analisis Sentimen Ulasan Hotel Bahasa Indonesia Menggunakan Support Vector Machine dan TF-IDF. Jurnal Media Informatika Budidarma, 6(3), 1767. https://doi.org/10.30865/mib.v6i3.4218
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Yessy Asri, Dwina Kuswardani, Josephine Ferdinanda Purba TS

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.










