Analisis Sentimen Masyarakat Terhadap Pelayanan Jasa Ekspedisi JNE dan J&T Express Menggunakan Metode Lexicon-Based

Authors

  • Sebastianus Adi Santoso Mola Universitas Nusa Cendana
  • Dinda Permata Mbatu Universitas Nusa Cendana
  • Dony Martinus Sihotang Universitas Nusa Cendana

Keywords:

JNE, J&T, Sentiment Analysis, Lexicon-based, InSet

Abstract

JNE and J&T Express are two of the largest and most popular courier companies in Indonesia, leading to various public opinions regarding the quality of their services. This research employs a lexicon-based method using the InSet dictionary, a simple scientific approach where the system calculates the weight of words and classifies them as positive, negative, or neutral sentiments. The analysis process begins with data collection of reviews using scraping techniques, followed by text processing including cleaning, case folding, normalization, tokenization, stemming, and stopword removal. Out of 3,565 reviews for JNE and 3,967 reviews for J&T, the sentiment analysis indicates that the majority of the public holds negative opinions towards the services of both courier companies. The analysis accuracy reaches 82% for JNE data, with a precision value of 95% for negative sentiment, 54% for positive sentiment, and 7% for neutral sentiment. The sensitivity values are 83% for negative sentiment, 82% for positive sentiment, and 15% for neutral sentiment. Data for J&T shows an accuracy of 78%, with a precision value of 97% for negative sentiment, 28% for positive sentiment, and 4% for neutral sentiment. Sensitivity values are 80% for negative sentiment, 82% for positive sentiment, and 4% for neutral sentiment.

References

Affandi, I. R., Hasan, F. N., Pratiwi, N., & Halim, Z. (2022). Analisis Sentimen Opini Masyarakat Terkait Pelayanan Jasa Ekspedisi Anteraja Dengan Metode Naive Bayes. Jurnal Linguistik Komputasional, 5(2), Article 2. https://doi.org/10.26418/jlk.v5i2.107

Akbar, M. N., Darmatasia, D., & Ardana, Y. (2022). Analisis Sentimen Terhadap Jasa Ekspedisi Pos Indonesia Pada Sosial Media Twitter Menggunakan Naïve Bayes Classifier. Journal Software, Hardware and Information Technology, 2(2), Article 2. https://doi.org/10.24252/shift.v2i2.34

Alita, D., & Isnain, A. R. (2020). Pendeteksian Sarkasme pada Proses Analisis Sentimen Menggunakan Random Forest Classifier. jurnal komputasi, 8(2). https://doi.org/10.23960/komputasi.v8i2.2615

Amaliah, F., & Dwi Nuryana, I. K. (2022). Perbandingan Akurasi Metode Lexicon Based Dan Naive Bayes Classifier Pada Analisis Sentimen Pendapat Masyarakat Terhadap Aplikasi Investasi Pada Media Twitter. Journal of Informatics and Computer Science (JINACS), 3(03), 384–393. https://doi.org/10.26740/jinacs.v3n03.p384-393

Basryah, E. S., Erfina, A., & Warman, C. (2021). Analisis sentimen aplikasi dompet digital di era 4.0 pada masa pendemi covid-19 di play store menggunakan algoritma naive bayes classifier.

Fadhillah, I. F. N., Herdiani, A., & Astuti, W. (2019). Analisis Sentimen Berbasis Leksikon InSet Terhadap Partai Politik Peserta Pemilu 2019 Pada Media Sosial Twitter. eProceedings of Engineering, 6(3), Article 3. https://openlibrarypublications.telkomuniversity.ac.id/index.php/engineering/article/view/11216

Fatihin, A. (2022). Analisis sentimen terhadap ulasan aplikasi mobile menggunakan metode support vector machine (SVM) dan pendekatan lexicon based (Bachelor's thesis, Fakultas Sains dan Teknologi Universitas Islam Negeri Syarif Hidayatullah Jakarta).

Ismail, A. R., & Hakim, R. B. F. (2023). Implementasi Lexicon Based Untuk Analisis Sentimen Dalam Mengetahui Trend Wisata Pantai Di DI Yogyakarta Berdasarkan Data Twitter. 1.

Koto, F., & Rahmaningtyas, G. (2017). InSet Lexicon: Evaluation of a Word List for Indonesian Sentiment Analysis in Microblogs. https://doi.org/10.1109/IALP.2017.8300625

Kurniawan, T. (2017). Implementasi Text Mining Pada Analisis Sentimen Pengguna Twitter Terhadap Media Mainstream Menggunakan Naïve Bayes Classifier Dan Support Vector Machine. Institut Teknologi Sepuluh Nopember, 2774-1702.

Musfiroh, D., Khaira, U., Utomo, P. E. P., & Suratno, T. (2021). Analisis Sentimen terhadap Perkuliahan Daring di Indonesia dari Twitter Dataset Menggunakan InSet Lexicon: Sentiment Analysis of Online Lectures in Indonesia from Twitter Dataset Using InSet Lexicon. MALCOM: Indonesian Journal of Machine Learning and Computer Science, 1(1), 24–33. https://doi.org/10.57152/malcom.v1i1.20

Nitami, M. T., & Februariyanti, H. (2022). Analisis Sentimen Ulasan Ekspedisi J&T Express Menggunakan Algoritma Naïve Bayes. Jurnal Manajemen Informatika Dan Sistem Informasi, 5(1), 20–29. https://doi.org/10.36595/misi.v5i1.396

Normawati, D., & Prayogi, S. A. (2021). Implementasi Naïve Bayes Classifier Dan Confusion Matrix Pada Analisis Sentimen Berbasis Teks Pada Twitter. 5.

Nurkasanah, A., & Hayaty, M. (2022). Feature Extraction using Lexicon on the Emotion Recognition Dataset of Indonesian Text. Ultimatics : Jurnal Teknik Informatika, 14(1), 20–27. https://doi.org/10.31937/ti.v14i1.2540

Ramadhan, A. S., & Marpaung, N. (2024). Pengaruh Word Of Mouth, Dissatisfaction, Variety Seeking Terhadap Brand Switching Jasa Kurir J&T Express. Transekonomika: Akuntansi, Bisnis Dan Keuangan, 4(2), 132-146.

Rajput, Q., Haider, S., & Ghani, S. (2016). Lexicon-Based Sentiment Analysis of Teachers’ Evaluation. Applied Computational Intelligence and Soft Computing, 2016, 1–12. https://doi.org/10.1155/2016/2385429

Rezki, M., Kholifah, D. N., Faisal, M., Priyono, P., & Suryadithia, R. (2020). Analisis Review Pengguna Google Meet dan Zoom Cloud Meeting Menggunakan Algoritma Naïve Bayes. Jurnal Infortech, 2(2), Article 2. https://doi.org/10.31294/infortech.v2i2.9286

Singh, V., Singh, G., Rastogi, P., & Deswal, D. (2018). Sentiment Analysis Using Lexicon Based Approach. 2018 Fifth International Conference on Parallel, Distributed and Grid Computing (PDGC), 13–18. https://doi.org/10.1109/PDGC.2018.8745971

Sitorus, P. R. (2021). Analisis Sentimen Data Ulasan Aplikasi Indriver pada Situs Google Play Menggunakan Metode Naïve Bayes Classifier dan Support Vector Machine [Thesis, Universitas Sumatera Utara]. https://repositori.usu.ac.id/handle/123456789/46908

Taboada, M., Brooke, J., Tofiloski, M., Voll, K., & Stede, M. (2011). Lexicon-Based Methods for Sentiment Analysis. Computational Linguistics, 37(2), 267–307. https://doi.org/10.1162/COLI_a_00049

Turney, P. D. (2001). Thumbs up or thumbs down?: Semantic orientation applied to unsupervised classification of reviews. Proceedings of the 40th Annual Meeting on Association for Computational Linguistics - ACL ’02, 417. https://doi.org/10.3115/1073083.1073153

Yerzi, F. S., & Sibaroni, Y. (2021). Analisis Sentimen Terhadap Kebijakan Pemerintah Dalam Menangani Covid-19 Dengan Pendekatan Lexicon Based. eProceedings of Engineering, 8(5).

Published

2025-04-30

Issue

Section

METHOMIKA: Jurnal Manajemen Informatika & Komputersisasi Akuntansi