Pemodelan Sistem Deteksi Intrusi pada Sistem Smart Home Pemantauan Konsumsi Energi Listrik Berbasis Machine Learning
Keywords:
Internet of Things, Smart home system, Intrusion Detection System, Machine Learning, Model EvaluationAbstract
The occurrence of electricity usage that exceeds the power capacity of the home requires a smart home system that can monitor electricity consumption efficiently. This smart home system is built based on the Internet of Things (IoT) which can help electricity users at home to evaluate usage more easily and in an integrated manner. The development of this IoT-based smart home system uses the ESP32 Micro Controller Unit (MCU) and the PZEM-004T v.3.0 sensor. The reading results from the system can be seen on the front end of the web-based application and the LCD module on the controller system. To obtain the efficiency of electricity usage, an electricity usage leakage detection system is needed or in this case, it is called an intrusion detection system or Intrusion Detection System (IDS). The development of IDS by identifying anomalies based on electricity usage. The IDS model utilizes Machine Learning with a labelling process pattern as a preprocess using the Isolation Forest unsupervised learning algorithm and the classification process using the Random Forest supervised learning algorithm with Anomaly and Normal status. Evaluation of the IDS model on the dataset that has gone through labelling gives quite good results with an accuracy value of 99.63 %. IDS Model is ready to be tested in the implementation of classifying recorded data in real-time against several electrical energy load scenarios in the future.
References
Badan Pusat Statistik. (2023). Statistik Listrik 2017-2021.
Harahap, P., Pasaribu, F. I., & Adam, M. (2020). Prototype Measuring Device for Electric Load in Households Using the Pzem-004T Sensor. Budapest International Research in Exact Sciences (BirEx), 2(3).
Kementerian Energi dan Sumber Daya Mineral. (2024). Konsumsi Listrik Masyarakat Meningkat, Tahun 2023 Capai 1.285 kWh/Kapita [Siaran Pers]. https://www.esdm.go.id/id/media-center/arsip-berita/konsumsi-listrik-masyarakat-meningkat-tahun-2023-capai-1285-kwh-kapita
Liu, F. T., Ting, K. M., & Zhou, Z.-H. (2008). Isolation Forest. 2008 Eighth IEEE International Conference on Data Mining, 413–422. https://doi.org/10.1109/ICDM.2008.17
Lulu Sabillah, & Hidayat, R. (2023). Sistem Monitoring Pemakaian Energi Listrik Pada Kamar Kost Menggunakan Aplikasi Blynk Berbasis Internet of Things. Jurnal Komputer Dan Elektro Sains, 1(2). https://doi.org/10.58291/komets.v1i2.104
Nugroho, E. P., Djatna, T., Sitanggang, I. S., Buono, A., & Hermadi, I. (2020). A Review of Intrusion Detection System in IoT with Machine Learning Approach: Current and Future Research. 2020 6th International Conference on Science in Information Technology: Embracing Industry 4.0: Towards Innovation in Disaster Management, ICSITech 2020. https://doi.org/10.1109/ICSITech49800.2020.9392075
Qaddoori, S. L., & Ali, Q. I. (2022). An embedded intrusion detection and prevention system for home area networks in advanced metering infrastructure. IET Information Security. https://doi.org/10.1049/ise2.12097
Sadhu, P. K., Yanambaka, V. P., & Abdelgawad, A. (2022). Internet of Things: Security and Solutions Survey. In Sensors (Vol. 22, Issue 19). https://doi.org/10.3390/s22197433
Sahroni, A., Manggala Aji, B., Fauzi Satria Negara, A., & Fauzan Permana, H. (2020). KOMET: Kwh Meter Listrik Digital Berbasis IoT. AJIE-Asian Journal of Innovation and Entrepreneurship, 05(03).
Statista. (2023). Smart Home - Worldwide. https://www.statista.com/outlook/dmo/smart-home/worldwide
Suarna, D., & Edy, E. S. (2023). Implementasi Internet of Things (IoT) dalam Memonitoring Komsumsi Listrik. Bulletin of Information Technology (BIT), 4(2). https://doi.org/10.47065/bit.v4i2.631
Susantok, M., Noptin Harpawi, & Muhammad Diono. (2022). Sistem Kendali Cerdas Penggunaan Daya Listrik Menggunakan Metode Eliminasi Nilai Tertinggi Berbasis IoT. Jurnal Elektro Dan Mesin Terapan, 8(2). https://doi.org/10.35143/elementer.v8i2.5552
Togbe, M. U., Barry, M., Boly, A., Chabchoub, Y., Chiky, R., Montiel, J., & Tran, V. T. (2020). Anomaly Detection for Data Streams Based on Isolation Forest Using Scikit-Multiflow. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 12252 LNCS. https://doi.org/10.1007/978-3-030-58811-3_2
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Eddy Prasetyo Nugroho, Sabian Annaya Havid, Muhammad Nursalman

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.










