Analisa Hubungan Penyakit Jantung Koroner Terhadap Penyebabnya Menggunakan Algoritma Frequent Pattern Growth
Keywords:
Analysis, Data Mining, Risk Factors, FP-Growth, Coronary Heart DiseaseAbstract
The increase in cases of coronary heart disease without detailed knowledge of the causes is a serious problem that requires immediate treatment. This study aims to analyze the relationship between causal factors and the incidence of coronary heart disease using the Frequent Pattern Growth (FP-Growth) algorithm. This algorithm is applied to medical data of inpatients at RSUD dr. Fauziah Bireuen to identify patterns of relationships that often arise between risk factors such as age, gender, diabetes, cholesterol, hypertension and uric acid on the diagnosis of coronary heart disease. There were 180 patient medical record data with 17 items used for analysis. The results show the three most significant relationship patterns: the combination of risk factors for diabetes and high cholesterol has a support value of 50% and confidence of 67%, the risk of diabetes in men has a support value of 47% and confidence of 63%, and the combination of cholesterol and hypertension shows a support value of 45 % and confidence 66%. These results are expected to provide better insight into the prevention, early detection and treatment of coronary heart disease, as well as improving health services in hospitals. This research also emphasizes the importance of applying data mining technology in the analysis of complex health data.
References
Alkhusari, A., Handayani, M., Saputra, M. A. S., & Rhomadhon, M. (2020). Analisis Kejadian Penyakit Jantung Koroner Di Poliklinik Jantung. Jurnal ’Aisyiyah Medika, 5(2), 99–110. https://doi.org/10.36729/jam.v5i2.758
Almira, A., Suendri, & Ali Ikhwan, D. (2021). Implementasi Data Mining Menggunakan Algoritma Fp-Growth pada Analisis Pola Pencurian Daya Listrik. Jurnal Informatika Universitas Pamulang, 6(2), 442–448. https://doi.org/10.32493/informatika.v6i2.12278
Darnila, E., Hidayat, I., & Afrillia, Y. (2023). Clustering Zonasi Daerah Rawan Bencana Alam di Kabupaten Mandailing Natal menggunakan Algoritma K-Means. G-Tech: Jurnal Teknologi Terapan, 7(3), 1218–1226. https://doi.org/10.33379/gtech.v7i3.2880
Fajriana, F., Sadli, M., Fuadi, W., Ermatita, E., & Pahendra, I. (2018). Penerapan Model K-Nearest Neighbors Dalam Klasifikasi Kebutuhan Daya Listrik Untuk Masing-Masing Daerah Di Kota Lhokseumawe. Jurnal ECOTIPE, 5(2), 11–18. https://doi.org/10.33019/ecotipe.v5i2.646
Hikmawati, E., Maulidevi, N. U., & Surendro, K. (2021). Minimum threshold determination method based on dataset characteristics in association rule mining. Journal of Big Data, 8(146), 1–17. https://doi.org/10.1186/s40537-021-00538-3
Johanis, I. J., Tedju Hinga, I. A., & Sir, A. B. (2020). Faktor Risiko Hipertensi, Merokok dan Usia terhadap Kejadian Penyakit Jantung Koroner pada Pasien di RSUD Prof. Dr. W. Z. Johannes Kupang. Media Kesehatan Masyarakat, 2(1), 33–40. https://doi.org/10.35508/mkm.v2i1.1954
Khoirunnisaa, N., Priatna, W., Rasim, & Warta, J. (2024). Analisis Pola Faktor Penyebab Balita Stunting Pada Dinas Kesehatan Kota Bekasi Menggunakan Algoritma FP-Growth. Jurnal Teknologi Dan Ilmu Komputer Prima (Jutikomp), 7(1), 73–87. https://doi.org/10.34012/jutikomp.v7i1.4761
Lienata, B., Fenriana, I., Andre, A., & Safitri, R. D. (2021). Penerapan Data Mining Pada Penjualan Pakaian Brand Expand Dengan Algoritma Apriori Menggunakan Metode Association Rules PT. Vidiaelok Lestari Garmindo. JURNAL ALGOR, 3(1), 83–95. https://doi.org/10.31253/algor.v3i1.647
Lina, N., & Saraswati, D. (2020). Deteksi Dini Penyakit Jantung Koroner di Desa Kalimanggis dan Madiasari Kabupaten Tasikmalaya. Jurnal Warta LPM, 23(1), 45–53. https://doi.org/10.23917/warta.v23i1.9019
Melyani, Tambunan, L. N., & Baringbing, E. P. (2023). Hubungan Usia dengan Kejadian Penyakit Jantung Koroner pada Pasien Rawat Jalan di RSUD dr . Doris Sylvanus Provinsi Kalimantan Tengah. Jurnal Surya Medika (JSM), 9(1), 119–125. https://doi.org/10.33084/jsm.v9i1.5158
Monica, R. F., Laksono Adiputro, D., & Marisa, D. (2019). Hubungan Hipertensi Dengan Penyakit Jantung Koroner Pada Pasien Gagal Jantung Di Rsud Ulin Banjarmasin. Homeostasis, 2(1), 121–124. https://doi.org/10.20527/ht.v2i1.438
Mulhayana, Gea, N. Y. K., & Simamora, R. S. (2022). The Correlation Of Hypertension With The Risk Of Incident Coronary Artery Disease In Elementary School Teachers Dukuhkarya Village In 2022. Jurnal Medicare, 1(4), 143–154. https://doi.org/10.62354/jurnalmedicare.v1i4.14
Oktaverina, D., & Purwowiyoto, S. L. (2024). Gagal Jantung Akut di Unit Gawat Darurat : Apa yang Harus Kita Lakukan ? Njm, 9(2), 75–82. https://doi.org/10.36655/njm.v9i2.1121
Pujiharto, E. W., Kusrini, K., & Nasiri, A. (2023). Analisis Perbandingan Kinerja Algoritma Apriori, FP-Growth dan Eclat dalam menemukan Pola Frekuensi pada Dataset INA-CBG’S. CogITo Smart Journal, 9(2), 340–354. https://doi.org/10.31154/cogito.v9i2.547.340-354
Rahmad, A. H. Al. (2021). Hubungan Indeks Massa Tubuh dengan Kolesterol, LDL, dan Trigliserida pada Pasien Jantung Koroner di Kota Banda Aceh. Jurnal Kesehatan, 9(1), 1–8. https://doi.org/10.25047/j-kes.v9i1
Rahmawati, I., Dwiana, D., Ratiyun, R. S., & Yesi, Y. (2020). Hubungan Diabetes Melitus Dengan Penyakit Jantung Koroner Pada Pasien Yang Berobat Di Poli Jantung. Jurnal Kesehatan Dr. Soebandi, 8(1), 56–62. https://doi.org/10.36858/jkds.v8i1.169
Rozak, I. (2021). Analisis Dan Perancangan Sistem Informasi Geografis Pemetaan Hama Tanaman Padi. Jurnal Informatika Dan Rekayasa Perangkat Lunak (JATIKA), 2(3), 375–381. https://doi.org/10.33365/jatika.v2i3.1239
Rusnandi, Suparni, & Pohan, A. B. (2020). Penerapan Data Mining Untuk Analisis Market Basket Dengan Algoritme Fp-Growth Pada Pd Pasar Tohaga. Jurnal Nasional Pendidikan Teknik Informatika : JANAPATI, 9(1), 119–133. https://doi.org/10.23887/janapati.v9i1.19349
Setyo, W. N., & Wardhana, S. (2019). Implementasi Data Mining Pada Penjualan Produk Di Cv Cahaya Setya Menggunakan Algoritma Fp-Growth. JURNAL PETIR, 12(1), 54–63. https://doi.org/10.33322/petir.v12i1.416
Sihombing, L. K., Tugiono, T., & Sari, U. F. (2022). Implementasi Data Mining Dalam Menganalisa Pola Penjualan Roti Menggunakan Algoritma Fp-Growth. Jurnal Sistem Informasi Triguna Dharma (JURSI TGD), 1(3), 228–238. https://doi.org/10.53513/jursi.v1i3.5288
Syahputri, A., & Yahfizham. (2024). Penerapan Algoritma Pemograman Dalam Optimalisasi Pola Makan Mahasiswa Penderita Gastritis Metode FP-Growth. Intelletika: Jurnal Ilmiah Mahasiswa, 2(1), 7–20. https://doi.org/10.59841/intellektika.v2i1.720
Tampubolon, L. F., Ginting, A., & Turnip, F. E. S. (2023). Gambaran Faktor yang Mempengaruhi Kejadian Penyakit Jantung Koroner (PJK) Di Pusat Jantung Terpadu (PJT). Jurnal Ilmiah Permas: Jurnal Ilmiah STIKES Kendal, 13(3), 1044–1045. https://doi.org/10.32583/pskm.v13i3.1077
Wahid, N. A. A., & Avianto, D. (2023). Penerapan Association Rule Terhadap Diagnosa Penyakit Menggunakan Algoritma Frequent Pattern Growth. Jurnal Ilmiah NERO, 8(2), 123–132. https://doi.org/10.21107/nero.v8i2.22566
Wiradinata, I. G. L. A., Putra, I. G. P., & Evayanti, L. G. (2022). Hubungan Kadar Asam Urat terhadap Kejadian Sindrom Koroner Akut di RSUD Sanjiwani Gianyar Tahun 2018 - 2019. Aesculapius Medical Journal, 2(1), 21–25. https://doi.org/10.22225/amj.2.1.2022.21-25
Yunanda, A. P., Rahmawati, H., Fadhli, I., & Purnomo, E. (2020). Algoritma Association Rule Dengan Metode Fp-Growth Untuk Menganalisa Tingkat Penyalahgunaan Narkoba (Studi Kasus Polres Padang Pariaman). Jurnal Ilmiah METADATA, 2(3), 214–231. https://doi.org/10.10101/metadata.v2i3
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Eva Darnila, Nazira Nazira, Fajriana Fajriana

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.










