Klasterisasi Pemetaan Kedisiplinan Pegawai Berdasarkan Rekap Kehadiran menggunakan Algoritma Clustering K-Means

Authors

  • Imam Ahmad Ashari Universitas Harapan Bangsa
  • Purwono Purwono Universitas Harapan Bangsa
  • Jatmiko Indriyanto Universitas Harapan Bangsa
  • Arif Setia Sandi A. Universitas Harapan Bangsa

Keywords:

Attendance Recap, Discipline, Data Mining, Clustering, K-Means Method

Abstract

Employee discipline is one of the key success factors in a company. Work discipline has an important role in the formation of a positive work environment. One of the things that shows employee discipline is the time of attendance. Attendance time is usually recorded at the time the employee enters and leaves. Disciplinary information can be mapped into several groupings so that it is easy for decision makers to read. One of the computational methods that can perform data mapping is the K-Means Clustering method. The K-Means Clustering method can group data based on their characteristics. In this study, attendance data were analyzed using the K-Means method to obtain disciplinary groupings. The number of Clusters is calculated using the elbow method, 3 Clusters are obtained which are the best Cluster choices, namely Clusters 0, 1, and 2. The data analysis process shows Cluster 2 is the Cluster with the best level of discipline. From the analysis, it shows that the K-Means Clustering method can classify data based on employee discipline. Based on these results, decision makers can be helped in assessing employee discipline at Universita Harapan Bangsa using the disciplinary data grouping that has been made.

References

Ali, Z. M., Hassoon, N. H., Ahmed, W. S., & Abed, H. N. (2020). The Application of Data Mining for Predicting Academic Performance Using K-means Clustering and Naïve Bayes Classification. International Journal of Psychosocial Rehabilitation, 24(03), 2143–2151. https://doi.org/10.37200/ijpr/v24i3/pr200962

Arunkumar, N., Mohammed, M. A., Abd Ghani, M. K., Ibrahim, D. A., Abdulhay, E., Ramirez-Gonzalez, G., & de Albuquerque, V. H. C. (2019). K-Means clustering and neural network for object detecting and identifying abnormality of brain tumor. Soft Computing, 23(19), 9083–9096. https://doi.org/10.1007/s00500-018-3618-7

Chang, W., Ji, X., Liu, Y., Xiao, Y., Chen, B., Liu, H., & Zhou, S. (2020). Analysis of university students’ behavior based on a fusion K-means clustering algorithm. Applied Sciences (Switzerland), 10(18). https://doi.org/10.3390/APP10186566

Chen, W., Oliverio, J., Kim, J. H., & Shen, J. (2019). The Modeling and Simulation of Data Clustering Algorithms in Data Mining with Big Data. Journal of Industrial Integration and Management, 04(01), 1850017. https://doi.org/10.1142/s2424862218500173

Dana, R. D., Rohmat, C. L., & Rinaldi, A. R. (2019). Strategi Marketing Penerimaan Mahasiswa Baru Menggunakan Machine Learning dengan Teknik Clustering. Jurnal Informatika: Jurnal Pengembangan IT, 4(2–2), 201–204. https://doi.org/10.30591/jpit.v4i2-2.1879

H Kara, O. A. M. A. (2014). Paper Knowledge. Toward a Media History of Documents, 7(2), 107–115.

Hossain, M. Z., Akhtar, M. N., Ahmad, R. B., & Rahman, M. (2019). A dynamic K-means clustering for data mining. Indonesian Journal of Electrical Engineering and Computer Science, 13(2), 521–526. https://doi.org/10.11591/ijeecs.v13.i2.pp521-526

Jothi, R., Mohanty, S. K., & Ojha, A. (2019). DK-means: a deterministic K-means clustering algorithm for gene expression analysis. Pattern Analysis and Applications, 22(2), 649–667. https://doi.org/10.1007/s10044-017-0673-0

Kausar, S., Huahu, X., Hussain, I., Wenhao, Z., & Zahid, M. (2018). Integration of Data Mining Clustering Approach in the Personalized E-Learning System. IEEE Access, 6, 72724–72734. https://doi.org/10.1109/ACCESS.2018.2882240

Liu, F., & Deng, Y. (2021). Determine the Number of Unknown Targets in Open World Based on Elbow Method. IEEE Transactions on Fuzzy Systems, 29(5), 986–995. https://doi.org/10.1109/TFUZZ.2020.2966182

Manochandar, S., Punniyamoorthy, M., & Jeyachitra, R. K. (2020). Development of new seed with modified validity measures for k-means clustering. Computers and Industrial Engineering, 141(July 2018), 106290. https://doi.org/10.1016/j.cie.2020.106290

Nguyen, T. H. T., Dinh, D. T., Sriboonchitta, S., & Huynh, V. N. (2019). A method for k-means-like clustering of categorical data. Journal of Ambient Intelligence and Humanized Computing, Berkhin 2002. https://doi.org/10.1007/s12652-019-01445-5

Purwono, P., Ma’arif, A., Mangku Negara, I. S., Rahmaniar, W., & Rahmawan, J. (2021). Linkage Detection of Features that Cause Stroke using Feyn Qlattice Machine Learning Model. Jurnal Ilmiah Teknik Elektro Komputer Dan Informatika, 7(3), 423. https://doi.org/10.26555/jiteki.v7i3.22237

Putri, E. M., Ekowati, V. M., Supriyanto, A. S., & Mukaffi, Z. (2019). the Effect of Work Environment on Employee Performance Through Work Discipline. International Journal of Research -GRANTHAALAYAH, 7(4), 132–140. https://doi.org/10.29121/granthaalayah.v7.i4.2019.882

Ramasamy, S., & Nirmala, K. (2020). Disease prediction in data mining using association rule mining and keyword-based clustering algorithms. International Journal of Computers and Applications, 42(1), 1–8. https://doi.org/10.1080/1206212X.2017.1396415

Rodriguez, M. Z., Comin, C. H., Casanova, D., Bruno, O. M., Amancio, D. R., Costa, L. da F., & Rodrigues, F. A. (2019). Clustering algorithms: A comparative approach. In PLoS ONE (Vol. 14, Issue 1). https://doi.org/10.1371/journal.pone.0210236

Saputra, T. (2019). Pengaruh Motivasi Kerja Terhadap Disiplin Kerja Karyawan Pada Hotel Permai Pekanbaru. Jurnal Benefita, 4(2), 316. https://doi.org/10.22216/jbe.v4i2.1548

Sato, Y., Izui, K., Yamada, T., & Nishiwaki, S. (2019). Data mining based on clustering and association rule analysis for knowledge discovery in multiobjective topology optimization. Expert Systems with Applications, 119, 247–261. https://doi.org/10.1016/j.eswa.2018.10.047

Sinaga, K. P., & Yang, M. S. (2020). Unsupervised K-means clustering algorithm. IEEE Access, 8, 80716–80727. https://doi.org/10.1109/ACCESS.2020.2988796

Virgo, I., Defit, S., & Yuhandri, Y. (2020). Klasterisasi Tingkat Kehadiran Dosen Menggunakan Algoritma K-Means Clustering. Jurnal Sistim Informasi Dan Teknologi, 2, 23–28. https://doi.org/10.37034/jsisfotek.v2i1.17

Yunmeng, Z., & Chengyi, Z. (2019). The Application of the Decision Tree Algorithm Based on K-means in Employee Turnover Prediction. Journal of Physics: Conference Series, 1325(1). https://doi.org/10.1088/1742-6596/1325/1/012123

Published

2025-04-30

Issue

Section

METHOMIKA: Jurnal Manajemen Informatika & Komputersisasi Akuntansi