Analisis Algoritma J48 Pada Pengambilan Keputusan Pemberian Pinjaman Kepada Calon Nasabah
DOI:
https://doi.org/10.46880/jmika.Vol8No2.pp281-293Keywords:
Classification, Decision Tree, J48 Algorithm, Loan ApprovalAbstract
This research aims to analyze the stages of decision making for granting loans to prospective customers using the J48 Algorithm. Using the "Loan-Approval-Prediction-Dataset" dataset obtained from Kaggle, this research will build a decision tree model that can provide insight into the key factors that influence the decision. It is hoped that the results of this research can contribute to financial institutions in increasing accuracy, efficiency and objectivity in the credit evaluation process, as well as helping prospective customers understand the factors that need to be considered to increase their chances of loan approval.
References
Agustiani, S., Mustopa, A., Saryoko, A., Gata, W., & Wildah, S. K. (2020). Penerapan Algoritma J48 Untuk Deteksi Penyakit Tiroid. Paradigma - Jurnal Komputer Dan Informatika, 22(2), 153–160. https://doi.org/10.31294/p.v22i2.8174
Andayanti, W., & Harie, S. (2020). Entrepreneurial Motivation Impact toward Entrepreneurship Interest of College Student. Intelektium, 1(2), 107–114.
Desta, A. W., & Nixon, J. S. (2020). Data Mining Application in Predicting Bank Loan Defaulters. International Journal of Innovative Technology and Exploring Engineering, 4(9), 2733–2744. https://doi.org/10.35940/ijitee.d2037.029420
Gulsoy, N., & Kulluk, S. (2019). A data mining application in credit scoring processes of small and medium enterprises commercial corporate customers. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 9(3), 1–12. https://doi.org/10.1002/widm.1299
Habriyanto, H., Kurniawan, B., & Firmansyah, D. (2021). Pengaruh Modal dan Tenaga Kerja terhadap Pendapatan UMKM Kerupuk Ikan SPN Kota Jambi. Jurnal Ilmiah Universitas Batanghari Jambi, 21(2), 853. https://doi.org/10.33087/jiubj.v21i2.1572
Koten, V. L., & Sayang, S. (2022). Pengaruh Jumlah Tanggungan, Pendapatan dan Besar Pinjaman Terhadap Tingkat Kelancaran Pengembalian Kredit Usaha Rakyat (KUR) Mikro Pada BRI Cabang Larantuka. Jurnal Riset Ilmu Akuntansi, 3(2), 120–130.
Kusuma, F. F. (2023). Penerapan Data Mining Untuk Akurasi Analisis Cuaca di Australia Menggunakan Algoritma J48 Decision Tree. Journal Computer Science and Information Systems : J-Cosys, 3(2), 65–68. https://doi.org/10.53514/jco.v3i2.396
Madaan, M., Kumar, A., Keshri, C., Jain, R., & Nagrath, P. (2021). Loan default prediction using decision trees and random forest: A comparative study. IOP Conference Series: Materials Science and Engineering, 1022(1), 0–12. https://doi.org/10.1088/1757-899X/1022/1/012042
Madan, N. M. (2017). Providing Banking Loan to Customers Based on J48 Classifier Algorithm Combined with Neural Networks. International Journal of Latest Technology in Engineering, Management & Applied Science (IJLTEMAS), 6(7S), 58–62.
Mohammed, M., & Kassie, A. (2018). Data Mining Application in Prediction of potential Customers of POS Machine Users in Fund Transaction. 2018 2nd International Conference on Trends in Electronics and Informatics (ICOEI), 115–120.
Oetama, R. S. (2015). Enhancing Decision Tree Performance in Credit Risk Classification and Prediction. Ultimatics : Jurnal Teknik Informatika, 7(1), 51–53. https://doi.org/10.31937/ti.v7i1.349
Sinaga, K., Buulolo, E., & Nadeak, B. (2019). Implementasi Algoritma Decision Tree_J48 untuk Memprediksi Resiko Kredit pada Koperasi Simpan Pinjam (Studi Kasus : Kofipindo Lubuk Pakam). KOMIK (Konferensi Nasional Teknologi Informasi Dan Komputer), 3(1), 20–24. https://doi.org/10.30865/komik.v3i1.1561
Solikha Puji Astuti, Dwi Harini, & Bambang Riono, S. (2022). Pengaruh Tingkat Suku Bunga Dan Jangka Waktu Terhadap Kredit Macet (Studi Kasus Pada Koperasi Syariah Masyarakat Kertasinduyasa, Jatibarang, Brebes). Jurnal Akuntansi Dan Bisnis, 2(2), 49–55. https://doi.org/10.51903/jiab.v2i2.157
Tanza, A., & Utari, D. T. (2022). Comparison of the Naïve Bayes Classifier and Decision Tree J48 for Credit Classification of Bank Customers. EKSAKTA: Journal of Sciences and Data Analysis, 3(2), 70–77. https://doi.org/10.20885/eksakta.vol3.iss2.art2
Widyani, R. S., Pujaastawa, I. B. G., & Wiasti, N. M. (2023). Alasan Kecenderungan Berutang Melalui Spaylater di Kalangan Mahasiswa Universitas Udayana. Jurnal Sosiologi Indonesia, 3(2), 1–16.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Agnes Irene Silitonga, Lukas Ginting, Enjelina Sinaga, Elson Zega, Samuel Sembiring, Yoakim Simamora
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.