Evaluating The Quality of K-Medoids Clustering on Crime Data in Indonesia
DOI:
https://doi.org/10.46880/jmika.Vol8No2.pp274-280Keywords:
K-Medoids Clustering, Crime Data Analysis, Criminal Incidents, Evaluation Metrics, Data NormalizationAbstract
This study evaluates the quality of K-Medoids clustering applied to criminal incident data in Indonesia from 2000 to 2023. The analysis compares the clustering performance on both original and normalized datasets using various evaluation metrics, including the Davies-Bouldin Index (DBI), Silhouette Score (SS), Normalized Mutual Information (NMI), Adjusted Rand Index (ARI), and Calinski-Harabasz Index (CH). The findings reveal that the original dataset consistently outperforms the normalized dataset across all metrics. The optimal clustering was achieved in the seventh iteration of the original data, with the lowest DBI (0.438), the highest SS (0.683), NMI (0.916), ARI (0.984), and CHI (57.418). In contrast, the normalized data exhibited higher DBI values and, in some cases, negative Silhouette Scores, indicating less distinct clusters. These results suggest that for this dataset, K-Medoids clustering performs more effectively on the original data without normalization, providing more accurate and well-defined clusters of criminal incidents. This insight is crucial for future research and practical applications in crime data analysis, emphasizing the importance of dataset preprocessing in clustering methodologies.
References
Budiaji, W., & Leisch, F. (2019). Simple K-medoids partitioning algorithm for mixed variable data. Algorithms, 12(9), 177.
Dinata, R. K., Retno, S., & Hasdyna, N. (2021). Minimization of the Number of Iterations in K-Medoids Clustering with Purity Algorithm. Rev. d'Intelligence Artif., 35(3), 193-199.
Fauzi, M. Z., & Abdullah, A. (2021, February). Clustering of public opinion on natural disasters in Indonesia using DBSCAN and K-Medoids algorithms. In Journal of Physics: Conference Series (Vol. 1783, No. 1, p. 012016). IOP Publishing.
Ghufron, G., Surarso, B., & Gernowo, R. (2020). The implementations of K-medoids clustering for higher education accreditation by evaluation of Davies Bouldin index clustering. Jurnal Ilmiah KURSOR, 10(3).
Herman, E., Zsido, K. E., & Fenyves, V. (2022). Cluster analysis with k-mean versus k-medoid in financial performance evaluation. Applied Sciences, 12(16), 7985.
Islam, M. T., Basak, P. K., Bhowmik, P., & Khan, M. (2019, October). Data clustering using hybrid genetic algorithm with k-means and k-medoids algorithms. In 2019 23rd International computer science and engineering conference (ICSEC) (pp. 123-128). IEEE.
Luchia, N. T., Handayani, H., Hamdi, F. S., Erlangga, D., & Octavia, S. F. (2022). Perbandingan K-Means dan K-Medoids Pada Pengelompokan Data Miskin di Indonesia: Comparison of K-Means and K-Medoids on Poor Data Clustering in Indonesia. MALCOM: Indonesian Journal of Machine Learning and Computer Science, 2(2), 35-41.
Mousavi, S. H. A. H. L. A., Boroujeni, F. Z., & Aryanmehr, S. A. E. E. D. (2020). Improving customer clustering by optimal selection of cluster centroids in k-means and k-medoids algorithms. Journal of Theoretical and Applied Information Technology, 98(18), 3807-3814.
Nakagawa, K., Imamura, M., & Yoshida, K. (2019). Stock price prediction using k‐medoids clustering with indexing dynamic time warping. Electronics and Communications in Japan, 102(2), 3-8.
Oktarina, C., Notodiputro, K. A., & Indahwati, I. (2020). Comparison of k-means clustering method and k-medoids on twitter data. Indonesian Journal of Statistics and Its Applications, 4(1), 189-202.
Rifa, I. H., Pratiwi, H., & Respatiwulan, R. (2020). Clustering of earthquake risk in Indonesia using k-medoids and k-means algorithms. Media statistika, 13(2), 194-205.
Samudi, S., Widodo, S., & Brawijaya, H. (2020). The K-Medoids clustering method for learning applications during the COVID-19 pandemic. Sinkron: jurnal dan penelitian teknik informatika, 5(1), 116-121.
Yanti, R., Retno, S., & Yafis, B. (2024). Implementation of K-NN Algorithm to classify the Scholarship Recipients of Aceh Carong at Universitas Malikussaleh. Journal of Advanced Computer Knowledge and Algorithms, 1(1), 5-9.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Sujacka Retno, Rozzi Kesuma Dinata, Novia Hasdyna
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.