Klasifikasi Berisiko Stunting pada Balita: Perbandingan K-Nearest Neighbor, Naïve Bayes, Support Vector Machine
DOI:
https://doi.org/10.46880/jmika.Vol8No2.pp264-273Keywords:
Stunting, Classification, Support Vector Machine, Naïve Bayes, K-Nearest NeighborAbstract
Stunting in children under five is a significant health problem that impacts child development. This study aims to develop a classification model to predict stunting risk using SVM, KNN, and Naïve Bayes algorithms. Data from the Jatilawang Health Center included 523 under-fives with variables such as age, weight, length, arm circumference, z-score, parental education, and maternal health history. Following the CRISP-DM steps, the data was processed through handling missing data, feature selection, and dividing the data into training and testing sets with a ratio of 80:20. Results showed SVM had the highest accuracy of 90%, followed by KNN 89%, and Naïve Bayes 85%. This research produces a stunting risk prediction model that is implemented in a simple website, supporting early intervention and decision-making in stunting prevention efforts.
References
Abadi, M. R., Defiyanti, S., & Sulistiowati, N. (2019). Penerapan Algoritma C4.5 Untuk Klasifikasi Keberhasilan Pengiriman Barang. 8(1), 36–43.
Adriyendi, A., & Melia, Y. (2020). Klasifikasi Menggunakan Naïve Bayes Dan K-Nearest Neighbor Pada Manajemen Layanan Teknologi Informasi. Jurnal Teknologi Dan Sistem Informasi Bisnis, 2(2), 99–107. https://doi.org/10.47233/jteksis.v2i2.121
Ariyadi. (2020). Klasifikasi Spesies Lebah Berbasis Data Citra Dengan Metode Support Vector Machine. Jurnal Inovasi Penelitian, 1(3), 599–597.
Azizah, N., Nastia, & Sadat, A. (2022). Strategi Dinas Kesehatan Dalam Menekan Laju Penderita Stunting Di Kabupaten Buton Selatan. 2(12), 4145–4152.
Cahyanti, F. L. D., Gata, W., & Sarasati, F. (2021). Implementasi Algoritma Naïve Bayes dan K-Nearest Neighbor Dalam Menentukan Tingkat Keberhasilan Immunotherapy Untuk Pengobatan Penyakit Kanker Kulit. Jurnal Ilmiah Universitas Batanghari Jambi, 21(1), 259. https://doi.org/10.33087/jiubj.v21i1.1189
Erik, Rohman, A., Rosyana, A., Rianti, A., Muhaemi, E., Yuni, E. E., Fauziah, F., Rojuli, Abdi, Y., & Huda, N. (2020). Stunting pada anak usia dini (Study Kasus di Desa Mirat Kec Lewimunding Majalengka). Jurnal Pengabdian Masyarakat, 2(1), 24–36.
Hidayat, R., & Astuti, T. (2020). Diagnosis Preeklamsia pada Ibu Hamil Berdasarkan Algoritme K- Nearest Neighbour. Jurnal Ilmu-Ilmu Informatika Dan Manajemen STMIK, 14(2), 106–116.
Kementerian Kesehatan Republik Indonesia. (2023). Menteri Kesehatan Republik Indonesia Hasil Survei Status Gizi Indonesia (SSGI) 2022. 1–7.
Kementrian Kesehatan RI. (2021). Tujuan Pembangunan Berkelanjutan (TPB)/SDGs. Kementrian Kesehatan RI, 6.
Lonang, S., & Normawati, D. (2022). Klasifikasi Status Stunting Pada Balita Menggunakan K-Nearest Neighbor Dengan Feature Selection Backward Elimination. Jurnal Media Informatika Budidarma, 6(1), 49. https://doi.org/10.30865/mib.v6i1.3312
Lundén, N., Bekar, E. T., Skoogh, A., & Bokrantz, J. (2023). Domain Knowledge in CRISP-DM: An Application Case in Manufacturing. IFAC-PapersOnLine, 56(2), 7603–7608. https://doi.org/10.1016/j.ifacol.2023.10.1156
Malo, Y., & Janga, A. U. (2023). Klasifikasi Penentuan Stunting Menggunakan Metode Naïve Bayes ( Studi Kasus : Desa Letekonda Selatan ). 6, 217–226.
Maulidah, N., Supriyadi, R., Utami, D. Y., Hasan, F. N., Fauzi, A., & Christian, A. (2021). Prediksi Penyakit Diabetes Melitus Menggunakan Metode Support Vector Machine dan Naive Bayes. Indonesian Journal on Software Engineering (IJSE), 7(1), 63–68. https://doi.org/10.31294/ijse.v7i1.10279
Nalatissifa, H., Gata, W., Diantika, S., & Nisa, K. (2021). Perbandingan Kinerja Algoritma Klasifikasi Naive Bayes, Support Vector Machine (SVM), dan Random Forest untuk Prediksi Ketidakhadiran di Tempat Kerja. Jurnal Informatika Universitas Pamulang, 5(4), 578. https://doi.org/10.32493/informatika.v5i4.7575
Nisa Sofia Amriza, R., Supriyadi, D., Jl Panjaitan No, P. DI, Purwokerto Selatan, K., Banyumas, K., & Tengah, J. (2021). Komparasi Metode Machine Learning dan Deep Learning untuk Deteksi Emosi pada Text di Sosial Media. Jurnal JUPITER, 13(2), 130–139.
Nurkhaliza, A. A., & Wijayanto, A. W. (2022). Perbandingan Algoritma Klasifikasi Support Vector Machine dan Random Forest pada Prediksi Status Indeks Mitigasi dan Kesiapsiagaan Bencana (IMKB) Satuan Kerja BPS di Indonesia Tahun 2020. Maret, 7(1), 54–59.
Pratiwi, B. P., Handayani, A. S., & Sarjana, S. (2021). Pengukuran Kinerja Sistem Kualitas Udara Dengan Teknologi Wsn Menggunakan Confusion Matrix. Jurnal Informatika Upgris, 6(2), 66–75. https://doi.org/10.26877/jiu.v6i2.6552
Purwono, Wirasto, A., & Nisa, K. (2021). Komparasi Algoritma Machine Learning Untuk Klasifikasi Kelompok Obat Comparison of Machine Learning Algorithms for. 11(2), 196–207.
Rarasati, D. B. (2020). A Grouping of Song-Lyric Themes Using K-Means Clustering. JISA(Jurnal Informatika Dan Sains), 3(2), 38–41. https://doi.org/10.31326/jisa.v3i2.658
Religia, Y. R., Pranoto, G. T., & Suwancita, I. M. (2021). Analysis of the Use of Particle Swarm Optimization on Naïve Bayes for Classification of Credit Bank Applications. JISA(Jurnal Informatika Dan Sains), 4(2), 133–137. https://doi.org/10.31326/jisa.v4i2.946
Roihan, A., Sunarya, P. A., & Rafika, A. S. (2020). Pemanfaatan Machine Learning dalam Berbagai Bidang: Review paper. IJCIT (Indonesian Journal on Computer and Information Technology), 5(1), 75–82. https://doi.org/10.31294/ijcit.v5i1.7951
Saputra, D., Irmayani, W., Purwaningtias, D., & Sidauruk, J. (2021). A Comparative Analysis of C4.5 Classification Algorithm, Naïve Bayes and Support Vector Machine Based on Particle Swarm Optimization (PSO) for Heart Disease Prediction. International Journal of Advances in Data and Information Systems, 2(2), 84–95. https://doi.org/10.25008/ijadis.v2i2.1221
Setiawan, E. I., Johanes, S., Hermawan, A. T., & Yamasari, Y. (2021). Deteksi Validitas Berita pada Media Sosial Twitter dengan Algoritma Naive Bayes. Journal of Intelligent System and Computation, 3(2), 55–60. https://doi.org/10.52985/insyst.v3i2.164
Sukmawati, Hendrayati, Chaerunimah, & Nurhumairah. (2018). Keterkaitan status gizi ibu hamil serta BBLR dengan stunting pada anak. Media Gizi Pangan, 25, 18–24.
Syahrial, S., Ilham, R., Asikin, Z. F., & Nurdin, St. S. I. (2022). Stunting Classification in Children’s Measurement Data Using Machine Learning Models. Journal La Multiapp, 3(2), 52–60. https://doi.org/10.37899/journallamultiapp.v3i2.614
Syahrir, S., Bayulianto, S., Kusumawati, V. F. P. I., Teguh, Prasetyo, M., Amrullah, A., Anggono, A., & Riza Ibnu Adam, M. S. (2022). Klasifikasi Penyakit Paru-Paru Dengan Algoritma K-NN (K-Nearest Ineighbor) Berdasarkan Fitur Tekstur Glcm. 1.
Tembusai, Z. R., Mawengkang, H., & Zarlis, M. (2021). K-Nearest Neighbor with K-Fold Cross Validation and Analytic Hierarchy Process on Data Classification. 2(1), 1–8. https://doi.org/10.25008/ijadis.v2i1.1204
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Ramadya Wahyu Dwinanto, Arif Setia Sandi A, Rian Ardianto
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.