Klasifikasi Berisiko Stunting pada Balita: Perbandingan K-Nearest Neighbor, Naïve Bayes, Support Vector Machine

Authors

  • Ramadya Wahyu Dwinanto Universitas Harapan Bangsa
  • Arif Setia Sandi A Universitas Harapan Bangsa
  • Rian Ardianto Universitas Harapan Bangsa

DOI:

https://doi.org/10.46880/jmika.Vol8No2.pp264-273

Keywords:

Stunting, Classification, Support Vector Machine, Naïve Bayes, K-Nearest Neighbor

Abstract

Stunting in children under five is a significant health problem that impacts child development. This study aims to develop a classification model to predict stunting risk using SVM, KNN, and Naïve Bayes algorithms. Data from the Jatilawang Health Center included 523 under-fives with variables such as age, weight, length, arm circumference, z-score, parental education, and maternal health history. Following the CRISP-DM steps, the data was processed through handling missing data, feature selection, and dividing the data into training and testing sets with a ratio of 80:20. Results showed SVM had the highest accuracy of 90%, followed by KNN 89%, and Naïve Bayes 85%. This research produces a stunting risk prediction model that is implemented in a simple website, supporting early intervention and decision-making in stunting prevention efforts.

References

Abadi, M. R., Defiyanti, S., & Sulistiowati, N. (2019). Penerapan Algoritma C4.5 Untuk Klasifikasi Keberhasilan Pengiriman Barang. 8(1), 36–43.

Adriyendi, A., & Melia, Y. (2020). Klasifikasi Menggunakan Naïve Bayes Dan K-Nearest Neighbor Pada Manajemen Layanan Teknologi Informasi. Jurnal Teknologi Dan Sistem Informasi Bisnis, 2(2), 99–107. https://doi.org/10.47233/jteksis.v2i2.121

Ariyadi. (2020). Klasifikasi Spesies Lebah Berbasis Data Citra Dengan Metode Support Vector Machine. Jurnal Inovasi Penelitian, 1(3), 599–597.

Azizah, N., Nastia, & Sadat, A. (2022). Strategi Dinas Kesehatan Dalam Menekan Laju Penderita Stunting Di Kabupaten Buton Selatan. 2(12), 4145–4152.

Cahyanti, F. L. D., Gata, W., & Sarasati, F. (2021). Implementasi Algoritma Naïve Bayes dan K-Nearest Neighbor Dalam Menentukan Tingkat Keberhasilan Immunotherapy Untuk Pengobatan Penyakit Kanker Kulit. Jurnal Ilmiah Universitas Batanghari Jambi, 21(1), 259. https://doi.org/10.33087/jiubj.v21i1.1189

Erik, Rohman, A., Rosyana, A., Rianti, A., Muhaemi, E., Yuni, E. E., Fauziah, F., Rojuli, Abdi, Y., & Huda, N. (2020). Stunting pada anak usia dini (Study Kasus di Desa Mirat Kec Lewimunding Majalengka). Jurnal Pengabdian Masyarakat, 2(1), 24–36.

Hidayat, R., & Astuti, T. (2020). Diagnosis Preeklamsia pada Ibu Hamil Berdasarkan Algoritme K- Nearest Neighbour. Jurnal Ilmu-Ilmu Informatika Dan Manajemen STMIK, 14(2), 106–116.

Kementerian Kesehatan Republik Indonesia. (2023). Menteri Kesehatan Republik Indonesia Hasil Survei Status Gizi Indonesia (SSGI) 2022. 1–7.

Kementrian Kesehatan RI. (2021). Tujuan Pembangunan Berkelanjutan (TPB)/SDGs. Kementrian Kesehatan RI, 6.

Lonang, S., & Normawati, D. (2022). Klasifikasi Status Stunting Pada Balita Menggunakan K-Nearest Neighbor Dengan Feature Selection Backward Elimination. Jurnal Media Informatika Budidarma, 6(1), 49. https://doi.org/10.30865/mib.v6i1.3312

Lundén, N., Bekar, E. T., Skoogh, A., & Bokrantz, J. (2023). Domain Knowledge in CRISP-DM: An Application Case in Manufacturing. IFAC-PapersOnLine, 56(2), 7603–7608. https://doi.org/10.1016/j.ifacol.2023.10.1156

Malo, Y., & Janga, A. U. (2023). Klasifikasi Penentuan Stunting Menggunakan Metode Naïve Bayes ( Studi Kasus : Desa Letekonda Selatan ). 6, 217–226.

Maulidah, N., Supriyadi, R., Utami, D. Y., Hasan, F. N., Fauzi, A., & Christian, A. (2021). Prediksi Penyakit Diabetes Melitus Menggunakan Metode Support Vector Machine dan Naive Bayes. Indonesian Journal on Software Engineering (IJSE), 7(1), 63–68. https://doi.org/10.31294/ijse.v7i1.10279

Nalatissifa, H., Gata, W., Diantika, S., & Nisa, K. (2021). Perbandingan Kinerja Algoritma Klasifikasi Naive Bayes, Support Vector Machine (SVM), dan Random Forest untuk Prediksi Ketidakhadiran di Tempat Kerja. Jurnal Informatika Universitas Pamulang, 5(4), 578. https://doi.org/10.32493/informatika.v5i4.7575

Nisa Sofia Amriza, R., Supriyadi, D., Jl Panjaitan No, P. DI, Purwokerto Selatan, K., Banyumas, K., & Tengah, J. (2021). Komparasi Metode Machine Learning dan Deep Learning untuk Deteksi Emosi pada Text di Sosial Media. Jurnal JUPITER, 13(2), 130–139.

Nurkhaliza, A. A., & Wijayanto, A. W. (2022). Perbandingan Algoritma Klasifikasi Support Vector Machine dan Random Forest pada Prediksi Status Indeks Mitigasi dan Kesiapsiagaan Bencana (IMKB) Satuan Kerja BPS di Indonesia Tahun 2020. Maret, 7(1), 54–59.

Pratiwi, B. P., Handayani, A. S., & Sarjana, S. (2021). Pengukuran Kinerja Sistem Kualitas Udara Dengan Teknologi Wsn Menggunakan Confusion Matrix. Jurnal Informatika Upgris, 6(2), 66–75. https://doi.org/10.26877/jiu.v6i2.6552

Purwono, Wirasto, A., & Nisa, K. (2021). Komparasi Algoritma Machine Learning Untuk Klasifikasi Kelompok Obat Comparison of Machine Learning Algorithms for. 11(2), 196–207.

Rarasati, D. B. (2020). A Grouping of Song-Lyric Themes Using K-Means Clustering. JISA(Jurnal Informatika Dan Sains), 3(2), 38–41. https://doi.org/10.31326/jisa.v3i2.658

Religia, Y. R., Pranoto, G. T., & Suwancita, I. M. (2021). Analysis of the Use of Particle Swarm Optimization on Naïve Bayes for Classification of Credit Bank Applications. JISA(Jurnal Informatika Dan Sains), 4(2), 133–137. https://doi.org/10.31326/jisa.v4i2.946

Roihan, A., Sunarya, P. A., & Rafika, A. S. (2020). Pemanfaatan Machine Learning dalam Berbagai Bidang: Review paper. IJCIT (Indonesian Journal on Computer and Information Technology), 5(1), 75–82. https://doi.org/10.31294/ijcit.v5i1.7951

Saputra, D., Irmayani, W., Purwaningtias, D., & Sidauruk, J. (2021). A Comparative Analysis of C4.5 Classification Algorithm, Naïve Bayes and Support Vector Machine Based on Particle Swarm Optimization (PSO) for Heart Disease Prediction. International Journal of Advances in Data and Information Systems, 2(2), 84–95. https://doi.org/10.25008/ijadis.v2i2.1221

Setiawan, E. I., Johanes, S., Hermawan, A. T., & Yamasari, Y. (2021). Deteksi Validitas Berita pada Media Sosial Twitter dengan Algoritma Naive Bayes. Journal of Intelligent System and Computation, 3(2), 55–60. https://doi.org/10.52985/insyst.v3i2.164

Sukmawati, Hendrayati, Chaerunimah, & Nurhumairah. (2018). Keterkaitan status gizi ibu hamil serta BBLR dengan stunting pada anak. Media Gizi Pangan, 25, 18–24.

Syahrial, S., Ilham, R., Asikin, Z. F., & Nurdin, St. S. I. (2022). Stunting Classification in Children’s Measurement Data Using Machine Learning Models. Journal La Multiapp, 3(2), 52–60. https://doi.org/10.37899/journallamultiapp.v3i2.614

Syahrir, S., Bayulianto, S., Kusumawati, V. F. P. I., Teguh, Prasetyo, M., Amrullah, A., Anggono, A., & Riza Ibnu Adam, M. S. (2022). Klasifikasi Penyakit Paru-Paru Dengan Algoritma K-NN (K-Nearest Ineighbor) Berdasarkan Fitur Tekstur Glcm. 1.

Tembusai, Z. R., Mawengkang, H., & Zarlis, M. (2021). K-Nearest Neighbor with K-Fold Cross Validation and Analytic Hierarchy Process on Data Classification. 2(1), 1–8. https://doi.org/10.25008/ijadis.v2i1.1204

Published

2024-10-31

Issue

Section

METHOMIKA: Jurnal Manajemen Informatika & Komputersisasi Akuntansi