IMPLEMENTASI K-MEANS RFM DAN HOLT-WINTERS EXPONENTIAL SMOOTHING ADDITIVE DALAM SISTEM BUSINESS INTELLIGENCE UNTUK STRATEGI PENGELOLAAN PELANGGAN PADA PERUSAHAAN TRANSPORTASI

Authors

  • Belfania Priandini Universitas Catur Insan Cendekia
  • Marsani Asfi Universitas Catur Insan Cendekia
  • Lena Magdalena Universitas Catur Insan Cendekia

Keywords:

Customer Segmentation, K-Means, RFM, Holt-Winters Exponential Smoothing, Business Intelligence.

Abstract

The growth of customer data in the transportation industry drives the need for analytical systems capable of segmenting customers objectively and strategically. This study aims to apply the K-Means Clustering method based on the Recency, Frequency, and Monetary (RFM) model for customer segmentation and utilize the Holt-Winters Exponential Smoothing Additive method to forecast passenger numbers. The dataset comprises 10,440 customer transactions from PT XYZ during the 2022–2024 period. RFM values were calculated, normalized, and processed using the K-Means algorithm to produce three customer clusters: Loyal, Regular, and Passive. Subsequently, the Holt-Winters method was employed to forecast passenger numbers, achieving the smallest Mean Absolute Percentage Error (MAPE) of 6.88%, indicating a high level of accuracy. The results were visualized through an interactive dashboard using Tableau, enabling management to make data-driven decisions. This research demonstrates that integrating segmentation and forecasting methods into a Business Intelligence system can enhance the effectiveness of marketing strategies and the operational efficiency of the company.

References

P. Indra Pangestu, T. Iman Hermanto, and D. Irmayanti, “ANALISIS SEGMENTASI PELANGGAN BERBASIS RECENCY FREQUENCY MONETARY (RFM) MENGGUNAKAN ALGORITMA K-MEANS,” JATI J. Mhs. Tek. Inform., vol. 7, no. 3, pp. 1486–1492, Oct. 2023, doi: 10.36040/jati.v7i3.7171.

W. A. Silamantha, K. Hadiono, and U. Stikubank, “Analisis RFM dan K-Means Clustering untuk Segmentasi Pelanggan pada PT. Sanutama Bumi Arto,” vol. 5, no. 3, 2024.

M. F. Fadhillah, A. L. A. Suyoso, and I. Puspitasari, “Segmentasi Pelanggan dengan Algoritma Clustering Berdasarkan Atribut Recency, Frequency dan Monetary (RFM): Customer Segmentation with Clustering Algorithm Based on Recency, Frequency, and Monetary (RFM) Attributes,” MALCOM Indones. J. Mach. Learn. Comput. Sci., vol. 5, no. 1, pp. 48–56, Nov. 2024, doi: 10.57152/malcom.v5i1.1491.

Muhammad Nur, Eis Nur Rizki, Abdul Alimul Karim, and Resy Kumala Sari, “Peramalan Jumlah Penumpang Domestik Pada Bandar Udara Sultan Syarif Kasim II Dengan Menggunakan Metode Winter’s Exponential Smoothing,” J. Teknol. Dan Manaj. Ind. Terap., vol. 3, no. I, pp. 57–66, Mar. 2024, doi: 10.55826/tmit.v3iI.302.

“Business Intelligence Terhadap Data Pelanggan Menggunakan Metode Clustering Multidimensi Untuk Segmentasi Pelanggan ( Studi Kasus PT Gama Inovasi Berdikari ).”

I. Ariati, R. N. Norsa, L. Akhsan, and J. Heikal, “SEGMENTASI PELANGGAN MENGGUNAKAN K-MEANS CLUSTERING STUDI KASUS PELANGGAN UHT MILK GREENFIELD,” Cerdika J. Ilm. Indones., vol. 3, no. 7, pp. 729–743, Jul. 2023, doi: 10.59141/cerdika.v3i7.639.

B. E. Adiana, I. Soesanti, and A. E. Permanasari, “ANALISIS SEGMENTASI PELANGGAN MENGGUNAKAN KOMBINASI RFM MODEL DAN TEKNIK CLUSTERING,” J. Terap. Teknol. Inf., vol. 2, no. 1, pp. 23–32, Apr. 2018, doi: 10.21460/jutei.2018.21.76.

Muhammad Nur, Eis Nur Rizki, Abdul Alimul Karim, and Resy Kumala Sari, “Peramalan Jumlah Penumpang Domestik Pada Bandar Udara Sultan Syarif Kasim II Dengan Menggunakan Metode Winter’s Exponential Smoothing,” J. Teknol. Dan Manaj. Ind. Terap., vol. 3, no. I, pp. 57–66, Mar. 2024, doi: 10.55826/tmit.v3iI.302.

Downloads

Published

15-09-2025

How to Cite

[1]
Belfania Priandini, Marsani Asfi, and Lena Magdalena, “IMPLEMENTASI K-MEANS RFM DAN HOLT-WINTERS EXPONENTIAL SMOOTHING ADDITIVE DALAM SISTEM BUSINESS INTELLIGENCE UNTUK STRATEGI PENGELOLAAN PELANGGAN PADA PERUSAHAAN TRANSPORTASI”, METHODIKA, vol. 11, no. 2, pp. 7–16, Sep. 2025.

Most read articles by the same author(s)