KLASIFIKASI FAKTOR PENYEBAB PERCERAIAN MENGGUNAKAN ALGORITMA C4.5
DOI:
https://doi.org/10.46880/mtk.v11i1.3584Keywords:
C4.5 Algorithm, Data Mining, Decision Tree, Divorce FactorsAbstract
Divorce is a complex social phenomenon that has significant impacts on individuals and society. In Indonesia, divorce is a serious concern for the government and society because the divorce rate has continued to increase in recent decades. Understanding the factors that contribute to divorce is essential to developing effective prevention strategies. The objective of this study is to classify the factors of divorce in Indonesia using the C4.5 algorithm, an algorithm used for data mining in building decision trees. This study used divorce data from 20 provinces in Indonesia in 2023 with various factors causing divorce. Divorce data was obtained from the Central Statistics Agency of Indonesia. The research process includes data collection, data pre-processing, and application of the C4.5 algorithm to build a classification model. The results of the study showed that continuous disputes and quarrels, apostasy, and economy are the most significant factors in divorce. The research results are expected to be a reference for policy makers and marriage counselors in formulating appropriate interventions to reduce divorce rates. The findings of this study can also serve as a foundation for establishing more effective policies and interventions to reduce divorce rates and enhance family institutions in Indonesia.
References
Badan Pusat Statistik, “Statistik Indonesia 2024,” Jakarta, 2024. [Online]. Available: https://www.bps.go.id/publication/2020/04/29/e9011b3155d45d70823c141f/statistik-indonesia-2020.html
N. Januari, “MENGGALI AKAR MASALAH: Analisis Kasus Perceraian di Indonesia,” Akad. J. Mhs. Humanis, vol. 3, no. 3, pp. 120–130, 2023, doi: 10.37481/jmh.v3i3.613.
J. Han, M. Kamber, and J. Pei, Data Mining Concepts and Techniques, 4th Editio. Cambridge: Morgan Kaufmann, 2023.
I. H. Witten, E. Frank, M. A. Hall, and C. J. Pal, “Data Mining: Practical Machine Learning Tools and Techniques,” Data Min. Pract. Mach. Learn. Tools Tech., pp. 1–621, 2016.
J. R. Quinlan, “C4.5 Programs for Machine Learning,” 1993. [Online]. Available: http://www.springerlink.com/index/10.1007/BF00993309
F. Muzakki, I. Ubaydillah, N. R. Assyiami, and S. Soleha, “Penerapan Algoritma C4.5 Untuk Prediksi Penyakit Jantung Menggunakan Rapidminer,” J. Komput. Antart., vol. 2, no. 2, pp. 71–79, 2024, doi: 10.70052/jka.v2i2.304.
A. I. Silitonga, Z. A. Nabila, C. Rizkia, Z. Lubis, and N. Safitri, “Klasterisasi Gizi Buruk dan Stunting di Provinsi Sumatera Utara Menggunakan K-Means Clustering,” vol. 10, no. 2, pp. 13–18, 2024.
D. Telaumbanua and I. Kurniawati, “Penerapan Algoritma C4.5 Untuk Klasifikasi Kepuasan Pelanggan Pada Jasa Layanan Pengiriman,” JoMMiT J. Multi Media dan IT, vol. 6, no. 1, pp. 1–6, 2022, doi: 10.46961/jommit.v6i1.524.
D. Wulandari, N. Lutfiyana, and H. Sumarno, “Metode Algoritma Decision Tree C4.5 Untuk Analisis Kelayakan Kredit Nasabah Pada Bsm Kcp Kemang Pratama,” EVOLUSI J. Sains dan Manaj., vol. 7, no. 2, pp. 36–42, 2019, doi: 10.31294/evolusi.v7i2.6757.
N. Aprilyani, I. Zulfa, and H. Syahputra, “Penerapan Algoritma Decision Tree C4.5 Untuk Model Penentuan Penerima Beasiswa Program Indonesia Pintar (Pip) Studi Kasus Sma Negeri 3 Timang Gajah,” J. Tek. Inform. dan Elektro, vol. 5, no. 1, pp. 96–109, 2022, doi: 10.55542/jurtie.v5i1.452.
J. Kumar, Data Warehouse and Data Mining : Concepts, Techniques, and Real Life Applications. London: BPB Online, 2024.
P.-N. Tan, M. Steinbach, A. Karpatne, and V. Kumar, Introduction to Data Mining, 2nd Edition. Harlow: Pearson, 2010.
O. Maimon and L. Rokach, Data Mining and Knowledge Discovery Handbook, 2nd Edition. Springer, 2010. doi: 10.1007/978-981-15-8983-6_42.
A. Fortino, Data Mining and Predictive Analytics for Business Decisions. Mercury Learning and Information, 2023.
B. P. Statistik, “Jumlah Perceraian Menurut Provinsi dan Faktor Tahun 2023,” Jakarta, 2023. [Online]. Available: https://www.bps.go.id/id/statistics-table/3/YVdoU1IwVmlTM2h4YzFoV1psWkViRXhqTlZwRFVUMDkjMw==/jumlah-perceraian-menurut-provinsi-dan-faktor.html?year=2023.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Agnes Irene Silitonga, Darwita Arini Nasution, Histi Trifesi Naibaho, Selvia Apriani, Dewi Pika Lumban Bantu

This work is licensed under a Creative Commons Attribution 4.0 International License.