PEMANFAATAN GOOGLE EARTH ENGINE DAN ALGORITMA RANDOM FOREST UNTUK PEMETAAN LAHAN PERKEBUNAN JERUK
Keywords:
Mapping, Citrus Plantations, Google Earth Engine, Satellite Imagery, Random ForestAbstract
This study employed Google Earth Engine (GEE) and the Random Forest algorithm to map citrus plantations in Silimakuta District, Simalungun Regency, North Sumatra. As a major citrus production center—reaching 840,000 quintals in 2023—the region faces challenges in producing accurate and efficient maps of plantation distribution. By processing Sentinel-2 and Sentinel-1 satellite imagery in GEE, this study provides a more detailed and reliable mapping solution. The Random Forest model achieved a land-cover classification accuracy of 97% and a Kappa coefficient of 96.3%, demonstrating the method’s effectiveness for land mapping. This approach can overcome existing limitations in land data and deliver visual information useful for increasing citrus plantation productivity in the region. Therefore, the combined use of Google Earth Engine and the Random Forest algorithm shows strong potential to support more optimal and sustainable land management.
References
S. Mananze, I. Pôças, and M. Cunha, “Mapping and assessing the dynamics of shifting agricultural landscapes using google earth engine cloud computing, a case study in Mozambique,” Remote Sens (Basel), vol. 12, no. 8, Apr. 2020, doi: 10.3390/RS12081279.
A. Paludo, W. R. Becker, J. Richetti, L. C. D. A. Silva, and J. A. Johann, “Mapping summer soybean and corn with remote sensing on Google Earth Engine cloud computing in Parana state–Brazil,” Int J Digit Earth, vol. 13, no. 12, pp. 1624–1636, 2020, doi: 10.1080/17538947.2020.1772893.
D. W. Triscowati, W. Pura Buana, and A. H. Marsuhandi, “Pemetaan Potensi Lahan Jagung menggunakan Citra Satelit dan Random Fores Pada GEE …………… (Dwi Wahyu Triscowati, dkk) Pemetaan Potensi Lahan Jagung Menggunakan Citra Satelit Dan Random Forest Pada Cloud computing Google Earth Engine Studi Kasus di 10 Kabupaten Jawa Timur (Mapping Corn Potential Area Using Satellite Imagery And Random Forest On Google Earth Engine Cloud Computing).”
Z. Hidayah, H. A. Rachman, and A. R. As-Syakur, “Pemetaan kondisi hutan mangrove di kawasan pesisir Selat Madura dengan pendekatan Mangrove Health Index memanfaatkan citra satelit Sentinel-2,” Majalah Geografi Indonesia, vol. 37, no. 1, p. 84, Mar. 2023, doi: 10.22146/mgi.78136.
S. Dimitriadou and K. G. Nikolakopoulos, “Reference evapotranspiration (Eto) methods implemented as arcmap models with remote-sensed and ground-based inputs, examined along with modis et, for peloponnese, greece,” ISPRS Int J Geoinf, vol. 10, no. 6, Jun. 2021, doi: 10.3390/ijgi10060390.
L. Somantri, “Pemetaan mobilitas penduduk di kawasan pinggiran Kota Bandung,” Majalah Geografi Indonesia, vol. 36, no. 2, p. 95, Jun. 2022, doi: 10.22146/mgi.70636.
M. Schonlau and R. Y. Zou, “The random forest algorithm for statistical learning,” Stata Journal, vol. 20, no. 1, pp. 3–29, Mar. 2020, doi: 10.1177/1536867X20909688.
W. Siska, W. Widiatmaka, Y. Setiawan, and S. H. Adi, “Pemetaan Perubahan Lahan Sawah Kabupaten Sukabumi Menggunakan Google Earth Engine,” TATALOKA, vol. 24, no. 1, pp. 74–83, Apr. 2022, doi: 10.14710/tataloka.24.1.74-83.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Chrissandro Dian Agaventa, Humuntal Rumapea, Indra Kelana Jaya

This work is licensed under a Creative Commons Attribution 4.0 International License.








