IMPLEMENTASI LOGIKA FUZZY MAMDANI DALAM SISTEM PENILAIAN KESEHATAN MAKANAN KEMASAN BERDASARKAN LABEL NUTRITION FACTS

Authors

  • Ahmad Nur Fauzan Universitas Mulawarman
  • Muhammad Abdillah Universitas Mulawarman
  • Reviansa Fakhruddin Aththar Universitas Mulawarman
  • Anindita Septiarini Universitas Mulawarman
  • Masna Wati Universitas Mulawarman

Keywords:

Mamdani fuzzy logic, decision support system, packaged food, nutrition facts, health evaluation, nutrition literacy

Abstract

The growth of the packaged food industry has increased the need for an easy-to-understand health assessment system for consumers, especially those with limited nutrition literacy. This study develops a Mamdani fuzzy logic-based decision support system to evaluate the healthiness of packaged foods using Nutrition Facts labels. The system processes nutritional parameters such as fat, sugar, salt, fiber, protein, fruit/vegetable/nut content, and calorie content, converting them into linguistic categories like "low," "moderate," and "high" for easier interpretation by lay users. It effectively handles uncertainties and ambiguities in nutrition data, providing classifications like "Unhealthy," "Healthy," or "Very Healthy." Implemented through a web platform using Python and Flask, the system was tested with five food samples, achieving an 80% agreement with the official NutriScore classification. This indicates the potential of the system as a reliable, practical tool to help consumers make quicker and more accurate dietary decisions and improve nutrition awareness.

References

C. N. Rarastiti and S. Sundari, “Hubungan Membaca Label Pangan terhadap Pemilihan Makanan Kemasan pada Mahasiswa Gizi Universitas IVET Semarang,” Termometer: Jurnal Ilmiah Ilmu Kesehatan dan Kedokteran, vol. 1, no. 4, pp. 12–21, 2023.

Aprianti Aprianti, “Literasi Informasi Nilai Gizi Pada Masyarakat Usia Produktif di Kota,” 2023.

L. Titania, “PENERAPAN APLIKASI FUZZY LOGIC DALAM PEMILIHAN MINUMAN KALENG,” JATI (Jurnal Mahasiswa Teknik Informatika), vol. 9, no. 3, pp. 4749–4755, 2025.

A. K. Nisa, M. Abdy, and A. Zaki, “Penerapan Fuzzy Logic untuk Menentukan Minuman Susu Kemasan Terbaik dalam Pengoptimalan Gizi,” Journal of Mathematics Computations and Statistics, vol. 3, no. 1, p. 51, 2020.

Alexandre Le Mercier, “Open Food Facts,” 2024. Accessed: May 19, 2025. [Online]. Available: https://www.kaggle.com/datasets/alexandrelemercier/food-detailed-nutritional-content/data

T. Gori, A. Sunyoto, and H. Al Fatta, “Preprocessing Data dan Klasifikasi untuk Prediksi Kinerja Akademik Siswa,” Jurnal Teknologi Informasi dan Ilmu Komputer, vol. 11, no. 1, pp. 215–224, Feb. 2024, doi: 10.25126/jtiik.20241118074.

B. Fatkhurrozi and H. T. Setiawan, “Implementasi Logika Fuzzy pada Sistem Kendali Suhu Dan Kelembaban Udara Ruangan Pengering Biji Kopi Berbasis Mikrokontroller,” Journal of Telecommunication Electronics and Control Engineering (JTECE), vol. 6, no. 1, pp. 50–59, Jan. 2024, doi: 10.20895/jtece.v6i1.1319.

H. Pujiharsono and D. Kurnianto, “Sistem inferensi fuzzy Mamdani untuk menentukan tingkat kualitas air pada kolam bioflok dalam budidaya ikan lele,” Jurnal Teknologi dan Sistem Komputer, vol. 8, no. 2, pp. 84–88, 2020.

S. Bakkara, S. Agustina Rumapea, and E. Rajagukguk, “PENERAPAN FUZZY TIME SERIES UNTUK PREDIKSI PRODUKSI IKAN TAMBAK DI SUMATERA UTARA,” Jurnal METHODIKA, [Online]. Available: https://sumut.bps.go.id/

Ingredify, “NutriScore Calculator.” Accessed: May 21, 2025. [Online]. Available: https://ingredify.one/nutri-score-calculator

Downloads

Published

15-09-2025

How to Cite

[1]
Ahmad Nur Fauzan, Muhammad Abdillah, Reviansa Fakhruddin Aththar, Anindita Septiarini, and Masna Wati, “IMPLEMENTASI LOGIKA FUZZY MAMDANI DALAM SISTEM PENILAIAN KESEHATAN MAKANAN KEMASAN BERDASARKAN LABEL NUTRITION FACTS”, METHODIKA, vol. 11, no. 2, pp. 29–35, Sep. 2025.