ANALYZING LECTURER PERFORMANCE FACTORS FROM COURSE EVALUATION SURVEYS USING K-MEANS CLUSTERING AND C4.5 CLASSIFICATION
Keywords:
Clustering, Classification, Data Mining, Lecturer Performance Assessment.Abstract
One of the quality of education of a college can be seen from the quality of the performance of the lecturers in the higher education Tridharma namely education, research, and development and community service. This study aims to analyze the lecturer performance factors based on the course evaluation survey on the Tridharma of higher education in the implementation of academic evaluations and decision making for lecturers in the Computer Science study program, Pakuan University. The research method applies a combination of two data mining methods, namely k-means clustering and C4.5 classification used in the assessment of the performance of lecturers, especially in the process of education and college teaching which includes pedagogical, professional, personality and social competencies. The results of the K-means clustering mining process were assessed by learning, namely 5 sufficient lecturer clusters, 16 good cluster lecturers and 14 excellent cluster lecturers. C 4.5 classification is used to see the connectedness of factors such as learning, publication, education, PKM, support. This study shows that publication criteria are the most influential factors in the performance assessment of lecturers. Testing the level of accuracy using the K-fold Cross Validation method with 5-fold Cross Validation is 80.00% and 7-fold Cross Validation which is 82.86%.
References
Darmanta Sukrianto. 2016. Penerapan Data Mining Untuk Kinerja Dosen Menggunakan K-means Clustering (Studi Kasus Di Amik Mahaputra Riau). Jurnal PI-Cache. 5(1): 54- 63.
Muhamad, M., Febri, T., Kasmi, Leni, A. 2017. Pembuatan model penilaian indeks kinerja dosen menggunakan metode fuzzy simple additive weighting. Seminar Nasional Teknologi Informasi dan Multimedia, STMIK AMIKOM Yogyakarta: 4-7 Februari 2017. ISSN : 2302-3805.
Ade Yuliana and D. B. Pratomo. 2017. Algoritma Decision Tree (C4.5) untuk memprediksi kepuasan mahasiswa Terhadap kinerja dosen politeknik TEDC Bandung. Seminar Nasional Inovasi Teknologi, UN PGRI Kediri: 22 Februari 2017. e-ISSN : 2549-7952.
Han, J. & Kamber, M. 2006, “Data Mining Concept and Techniques Second Edition ”. Morgan Kauffman, San Francisco.
Tosida et al. 2015. Visualization model of small and medium enterprises (SMEs) Telematics services potentiality map in Indonesia. Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Pakuan, Bogor.
Budanis, D. M, Nofi, S. 2015. Aplikasi Data Mining Untuk Menghasilkan Pola Kelulusan Siswa Dengan Metode Naïve Bayes. Jurnal Ilmiah NERO. 1(3): 182-189.
Johan Oscar Ong. 2013. Implementasi Algoritma K-Means Clustering Untuk Menentukan Strategi Marketing President University. Jurnal Ilmiah Teknik Industri. 12(1): 1412- 6869.
Kusrini and E. T. Luthfi. 2009. Algoritma Data Mining. Yogyakarta : Andi.
Sung, H. H., & Seong H. J. 2010. A Hybrid Data Mining Method for the Medical Classification of Chest Pain. International Journal of Computer and Information Engineering. 4(1):99-104.
Fu L. 1994. Neural Network In Computer Intelligence. Singapura : McGraw Hill.
Budi, D. S. Bain, K. K., Adam, M. 2015. Pengelompokan Tingkat Kesehatan Masyarakat Menggunakan Shelf Organizing Maps Dengan Cluster Validation Idb dan I-Dunn Seminar Nasional Aplikasi Teknologi Informasi (SNATi) 2015 Yogyakarta, 6 Juni 2015
DIKTI KEMENTERIAN RISET. 2019. Pedoman Operasional Penilaian Angka Kredit Kenaikan Jabatan Akademik/Pangkat Dosen Direktorat Jenderal Sumber Daya IPTEK dan Dikti Kementrian Riset, Teknologi dan Pendidikan Tinggi. Jakarta.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Ariel Alfaro

This work is licensed under a Creative Commons Attribution 4.0 International License.








