PENERAPAN ALGORITMA NEAREST NEIGHBOR DALAM MEMPREDIKSI KELAYAKAN PENERIMAAN KARTU KREDIT PADA BANK CIMB NIAGA

Authors

  • Eferoni Ndruru STMIK Budi Darma
  • Taronisokhi Zebua STMIK Budi Darma

DOI:

https://doi.org/10.46880/mtk.v5i1.410

Keywords:

Data Mining, Grouping, clusteringa

Abstract

A credit card application is a financial facility that allows a person or business entity to borrow money to buy a product and pay it back within a specified time. Credit card manufacture often experiences risk in providing credit, both moderate, good and very good risk, due to lack of data analysis and lack of attention. So the purpose of this study is to analyze the risks that often occur in making credit cards. And provide efficient solutions. In solving this problem, it is necessary to apply the method. The method used in this study is Nearest Neighbor. The Nearest Neighbor algorithm is an approach to finding cases by calculating the proximity between new cases (testing data) and old cases (training data), which is based on matching the weights of a number of existing features. Therefore, it can be applied in analyzing old customer data with data new so that comparisons can be made whether or not it is eligible to receive credit. The results obtained in this study are the results of testing systems and methods by producing a level of risk.

 

References

R. S. Lubis, “Data Mining Pengarsipan Dokumen Berdasarkan Kontrak Kerja Dengan Metode Alphabetic,” Inf. dan Teknol. Ilm., vol. 4, no. September, pp. 161–166, 2014.

H. D. Honesqi, “Klasifikasi Data Mining Untuk Menentukan Tingkat Persetujuan Kartu Kredit,” J. Teknoif, vol. 5, no. 2, pp. 57–62, 2017, doi: 10.21063/jtif.2017.v5.2.57-62.

R. L. Angga Ginanjar Mabrur, “PENERAPAN DATA MINING UNTUK MEMPREDIKSI Program Studi Teknik Informatika Jurnal Komputer dan Informatika ( KOMPUTA ),” J. Komput. dan Inform., vol. 1, pp. 53–57, 2012.

E. Ndruru, “Pemanfaatan Sistem Pendukung Keputusan Dalam Seleksi Pkw Terbaik Dengan Metode Aras Pada Lpk2-Pascom Medan,” vol. I, no. 2, pp. 26–34, 2019.

M. Reza Noviansyah, T. Rismawan, D. Marisa Midyanti, J. Sistem Komputer, and F. H. MIPA Universitas Tanjungpura Jl Hadari Nawawi, “Penerapan Data Mining Menggunakan Metode K-Nearest Neighbor Untuk Klasifikasi Indeks Cuaca Kebakaran Berdasarkan Data Aws (Automatic Weather Station) (Studi Kasus: Kabupaten Kubu Raya),” J. Coding, Sist. Komput. Untan, vol. 6, no. 2, pp. 48–56, 2018.

E. Ndruru, “Penerapan Algoritma C4 . 5 dalam Memprediksi Dampak Kebakaran Hutan bagi Kesehatan,” 2019.

M. Ridwan, H. Suyono, and M. Sarosa, “Penerapan Data Mining Untuk Evaluasi Kinerja Akademik Mahasiswa Menggunakan Algoritma Naive Bayes Classifier,” Eeccis, vol. 7, no. 1, pp. 59–64, 2013, doi: 10.1038/hdy.2009.180.

P. Studi, T. Industri, F. Teknik, U. Mulawarman, and N. Neighbour, A Suryani , Deasy Kartika Rahayu Kuncoro , Lina Dianati Fathimahhayati pemasaran . Distribusi dapat diartikan s,” vol. 6, no. 1, pp. 41–49, 2018.

T. I. Barokah and Y. I. Kurniawan, “Aplikasi Klasifikasi Penentuan Pengajuan Kartu Kredit Menggunakan Metode K-Nearest Neighbor Di Bank Bni Syariah Surabaya,” Komputa J. Ilm. Komput. dan Inform., vol. 8, no. 1, pp. 36–43, 2019, doi: 10.34010/komputa.v8i1.3047.

P. T. J. Putera, W. Ode, N. Kadir, and B. Pramono, “Penerapan data,” vol. 5, no. 1, pp. 97–104, 2019.

E. Ndruru and T. Zebua, “Application of Text Message Held in Image Using Combination of Least Significant Bit Method and One Time Pad,” IJCCS (Indonesian J. Comput. Cybern. Syst., vol. 13, no. 4, p. 323, 2019, doi: 10.22146/ijccs.46401.

E. Ndruru, “Penerapan Metode Certainty Factor Dalam Mendiagnosa Penyakit Cacar Pada Kulit Manusia,” J. Armada Inform., vol. 3, no. 1, pp. 10–22, 2019, doi: 10.36520/jai.v3i1.44.

Downloads

Published

10-03-2019

How to Cite

[1]
E. . Ndruru and T. . Zebua, “PENERAPAN ALGORITMA NEAREST NEIGHBOR DALAM MEMPREDIKSI KELAYAKAN PENERIMAAN KARTU KREDIT PADA BANK CIMB NIAGA”, METHODIKA, vol. 5, no. 1, pp. 1–5, Mar. 2019.

Issue

Section

Articles