PREDIKSI KURS MATA UANG RIYAL KE RUPIAH MENGGUNAKAN METODE SUPPORT VECTOR REGRESSION (SVR)
DOI:
https://doi.org/10.46880/mtk.v10i2.3307Keywords:
Currency_Exchange_Rates, Saudi_Arabian_Riyal, Support_Vector_Regression, MAPEAbstract
Currency exchange rates have an important role in a country's development and economy, especially in international trade and investment. Currency exchange rate fluctuations can have a significant impact on various aspects of the economy. One example is the Rupiah exchange rate against the Saudi Arabian Riyal (SAR), which is important for many Indonesian citizens who undertake the Hajj and Umrah. Currency exchange rate prediction is a complex task because it is influenced by various economic, political, and social factors. Therefore, a method is needed that is able to accommodate the complexity and dynamics of the data. One potential method for predicting currency exchange rates is Support Vector Regression (SVR). SVR is a machine learning method that has demonstrated good performance in various prediction applications due to its ability to handle non-linear data and capture complex patterns in data. This research aims to apply the SVR method to predict the Riyal currency exchange rate against the Rupiah. Prediction accuracy will be measured using Mean Absolute Percentage Error (MAPE). This research is expected to contribute in providing an accurate and efficient tool for predicting the Riyal exchange rate against the Rupiah, providing insight into the application of SVR in currency exchange prediction, and providing practical guidance in implementing the SVR method for the purpose of predicting currency exchange rates. Based on 120 test analyses using the Support Vector Regression (SVR) method using data compositions of 90: 10, 80: 20, and 70: 30, the Mean Absolute Percentage Error (MAPE) value is 0.817317 in testing using a data composition of 90: 10.
References
G. P. B. Are and S. H. Sitorus, “Prediksi Nilai Tukar Mata Uang Rupiah Terhadap Dolar Amerika Menggunakan Metode Hidden Markov Model,” Coding J. Komput. dan Apl., vol. 08, no. 01, pp. 44–54, 2020.
V. R. Prasetyo, H. Lazuardi, A. A. Mulyono, and C. Lauw, “Penerapan Aplikasi RapidMiner Untuk Prediksi Nilai Tukar Rupiah Terhadap US Dollar Dengan Metode Linear Regression,” J. Nas. Teknol. dan Sist. Inf., vol. 7, no. 1, pp. 8–17, 2021, doi: 10.25077/teknosi.v7i1.2021.8-17.
D. Yulia Hidayah, “Peramalan Nilai Tukar Rupiah terhadap Dollar Amerika dengan Metode Fuzzy Time Series (FTS) Markov Chain,” UNNES J. Math., vol. 10, no. 2, pp. 85–95, 2021, [Online]. Available: http://journal.unnes.ac.id/sju/index.php/ujm
A. S. Putri, S. Soehardjoepri, and A. Suharsono, “Optimasi Parameter Support Vector Regression pada Prediksi Nilai Tukar Dolar Amerika terhadap Rupiah dengan Menggunakan Genetic Algorithm dan Particle Swarm Optimization,” J. Sains dan Seni ITS, vol. 12, no. 2, 2023, doi: 10.12962/j23373520.v12i2.111596.
Z. Rais, “Analisis Support Vector Regression (Svr) Dengan Kernel Radial Basis Function (Rbf) Untuk Memprediksi Laju Inflasi Di Indonesia,” VARIANSI J. Stat. Its Appl. Teach. Res., vol. 4, no. 1, pp. 30–38, 2022, doi: 10.35580/variansiunm13.
Husnul Khatimi, Muhammad Alkaff, and Dewi Rizqia Najipah, “Penerapan Support Vector Regression (Svr) Untuk Peramalan Inflasi Bulanan Nasional,” J. Teknol. Inf. Univ. Lambung Mangkurat, vol. 2, no. 2, pp. 59–64, 2017, doi: 10.20527/jtiulm.v2i2.21.
M. W. Tirta, M. K. Nursyarif, I. Hasmadi, F. Akbar, and F. Yulianto, “Prediksi Kurs Mata Uang Rupiah Terhadap Ringgit Malaysia Menggunakan Algoritma Backpropagation,” J. Inform., vol. 11, no. 1, pp. 25–33, 2024, doi: 10.31294/inf.v11i1.20946.
E. D. Sri Mulyani, A. Bachtiar, D. Suci R, D. Rifki, I. Yogaswara, and N. S. Tyas, “Prediksi Kurs Rupiah Terhadap Dollar Amerika Menggunakan Metode Trend Moment,” INOVTEK Polbeng - Seri Inform., vol. 4, no. 2, p. 147, 2019, doi: 10.35314/isi.v4i2.1029.
P. R. Iswardani, M. Sudarma, and L. Jasa, “Peramalan Nilai Tukar Rupiah Terhadap Mata Uang Negara Asia Menggunakan Metode Quantum Neural Network,” Maj. Ilm. Teknol. Elektro, vol. 20, no. 1, p. 153, 2021, doi: 10.24843/mite.2021.v20i01.p18.
M. Laverda Subiyanto, Y. Amanda, M. Nadhil Fachrian, A. Yazid Busthomi Rohim, and N. Chamidah, “Peramalan Kasus Harian Monkeypox Dunia Dengan Pendekatan Support Vector Regression,” J. Apl. Stat. Komputasi Stat., vol. 15, no. 1, pp. 27–36, 2023.
F. N. S. Pradana and F. S. Papilaya, “Analisa Prediksi Harga Emas Dengan Kemungkinan Terjadinya Resesi Menggunakan Metode SVR,” SINTECH (Science Inf. Technol. J., vol. 6, no. 1, pp. 37–46, 2023, doi: 10.31598/sintechjournal.v6i1.1329.
R. Wahyudi, S. Annas, and Z. Rais, “Analisis Support Vector Regression (Svr) Untuk Meramalkan Indeks Kualitas Udara Di Kota Makassar,” Variansi J. Stat. Its Appl. Teach. Res., vol. 5, no. 3, pp. 104–117, 2023, doi: 10.35580/variansiunm107.
D. A. Nasution, H. H. Khotimah, and N. Chamidah, “Perbandingan Normalisasi Data untuk Klasifikasi Wine Menggunakan Algoritma K-NN,” Comput. Eng. Sci. Syst. J., vol. 4, no. 1, p. 78, 2019, doi: 10.24114/cess.v4i1.11458.
N. Fadilah and A. Andy Soebroto, “Peramalan Harga Pasar Telur Ayam Ras di Kota Malang dengan Menggunakan Metode ‘SVR - PSO,’” Peramalan Harga Pasar Telur Ayam Ras di Kota Malang dengan Menggunakan Metod. “Fuzzy Time Ser., vol. 2, no. 12, pp. 2548–964, 2018, [Online]. Available: http://j-ptiik.ub.ac.id
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Andika Wahyudi, Wahyudi Setiawan, Yudha Dwi Putra Negara
This work is licensed under a Creative Commons Attribution 4.0 International License.