KLASIFIKASI KUALITAS UDARA MENGGUNAKAN METODE EXTREME LEARNING MACHINE (ELM)

Authors

  • Rachma Raudhatul Jannah Mathematics Department, UIN Sunan Ampel
  • Muhammad Zulfikar Sholahuddin Mathematics Department, UIN Sunan Ampel
  • Dina Zatusiva Haq Mathematics Department, UIN Sunan Ampel
  • Dian C Rini Novitasari Mathematics Department, UIN Sunan Ampel

DOI:

https://doi.org/10.46880/mtk.v10i2.3066

Keywords:

ELM, Dampak_Polusi_udara, Kualitas_udara, Klasifikasi

Abstract

Air quality is a critical factor affecting both ecological and human well-being. Air pollution is a global epidemic that poses a threat to human health and the environment. High population density resulting from industrial expansion and the increased number of motor vehicles are two primary causes of declining air quality in metropolitan areas. Air pollutants include surface ozone (O3), dust particles (PM 10), sulfur dioxide (SO2), nitrogen dioxide (NO2), and carbon monoxide (CO). Researchers have begun exploring the use of Extreme Learning Machine (ELM) to classify air quality. The ELM method assesses air quality as either very good or poor. In this study, we compare datasets to evaluate the effectiveness of hidden node parameters using the split method. Our tests indicate that the split method impacts accuracy, sensitivity, and specificity. The ideal model with a 70:30 split ratio and 15 hidden nodes achieved a 90% success rate.  

References

J. Abidin dan F. A. Hasibuan, “Pengaruh dampak pencemaran udara terhadap kesehatan untuk menambah pemahaman masyarakat awam tentang bahaya dari polusi udara,” Pros. Semin. Nas. Fis. Univ. Riau IV, vol. 5, no. 4, hal. 1–7, 2019.

M. Raharjo, “Dampak Pencemaran Udara Pada Lingkungan Dan Kesehatan Manusia,” hal. 1–13, 2018

R. A. Hapsari dan A. Purwinarko, “Implementation of Convolutional Neural Network Algorithm Using Vgg-16 Architecture for Image Classification in Facial Images,” Recursive J. Informatics, vol. 1, no. 2, hal. 83–92, 2023, doi: 10.15294/rji.v1i2.68059.

Menteri Negara Lingungan Hidup, “Keputusan Menteri Negara Lingkungan Hidup No . 45 Tahun 1997 Tentang : Indeks Standar Pencemar Udara,” no. 45, 1997.

M. Yasir, “Pencemaran Udara Di Perkotaan Berdampak Bahaya Bagi Manusia, Hewan, Tumbuhan dan Bangunan,” J. OSF.Oi, hal. 1–10, 2021, [Daring]. Tersedia pada: https://doi.org/10.31219/osf.io/nc5rg

D. Culler, D. Estrin, dan M. Srivastava, “Overview of sensor networks,” Computer (Long. Beach. Calif)., vol. 37, no. 8, hal. 41–49, 2004, doi: 10.1109/MC.2004.93.

P. Mayadewi dan E. Rosely, “Prediksi Nilai Proyek Akhir Mahasiswa Menggunakan Algoritma Klasifikasi Data Mining,” Semin. Nas. Sist. Inf. Indones., vol. 2015, no. November, hal. 329–334, 2015.

I. Fadilla, P. P. Adikara, dan R. Setya Perdana, “Klasifikasi Penyakit Chronic Kidney Disease (CKD) Dengan Menggunakan Metode Extreme Learning Machine (ELM),” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 2, no. 10, hal. 3397–3405, 2018

Iq Air, “Air quality in South Tangerang,” IQ Air, 2024. https://www.kaggle.com/datasets/ourwit/air-quality-in-south-tangerang-indonesia-20-23?resource=download

R. Adinugroho, Perbandingan Rasio Split Data Training Dan Data Testing Menggunakan Metode Lstm Dalam Memprediksi Harga Indeks Saham Asia. 2022.

Suherman dan I. Muzaky, “Analisis Penjualan Barang Laris Dan Kurang Laris Terhadap Percetakan Awfa Digitl Printing Menggunakan Metode Decision Tree Dengan Optimasi Algoritma Genetika,” J. Teknol. Pelita Bangsa, vol. 10, no. 1, hal. 118–130, 2019.

A. P. Ariyanti, M. I. Mazdadi, A.- Farmadi, M. Muliadi, dan R. Herteno, “Application of Extreme Learning Machine Method With Particle Swarm Optimization to Classify of Heart Disease,” IJCCS (Indonesian J. Comput. Cybern. Syst., vol. 17, no. 3, hal. 281, 2023, doi: 10.22146/ijccs.86291.

A. Giusti, A. W. Widodo, dan S. Adinugroho, “Prediksi Penjualan Mi Menggunakan Metode Extreme Learning Machine (ELM) di Kober Mie Setan Cabang Soekarno Hatta,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 2, no. 8, hal. 2972–2978, 2018.

Y. V. Sari, Z. Muallifah, dan A. Fanani, “Klasifikasi Kualitas Air Menggunakan Metode Extreme Learning Machine (ELM),” J. JUPITER, vol. 15, no. 2, hal. 983–994, 2023

I. Riandri, D. Prawira, R. M. #2, N. #3, dan A. Winarko, “Implementasi Algoritma Extreme Learning Machine pada Prediksi Aktivitas Badai Geomagnetik Extreme Learning Machine Algorithm Implementation on Predicting Geomagnetic Storm Activity,” vol. 1, no. 1, hal. 7–13, 2018

I. W. Saputro dan B. W. Sari, “Uji Performa Algoritma Naïve Bayes untuk Prediksi Masa Studi Mahasiswa,” Creat. Inf. Technol. J., vol. 6, no. 1, hal. 1, 2020, doi: 10.24076/citec.2019v6i1.178.

V. V. Nurdiansyah, I. Cholissodin, dan P. P. Adikara, “Klasifikasi Penyakit Tuberkulosis ( TB ) menggunakan Metode Extreme Learning Machine ( ELM ),” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 4, no. 5, hal. 1387–1393, 2020.

R. J. Rumandan, R. Nuraini, N. Sadikin, dan Y. Rahmanto, “Klasifikasi Citra Jenis Daun Berkhasiat Obat Menggunakan Algoritma Jaringan Syaraf Tiruan Extreme Learning Machine,” J. Comput. Syst. Informatics, vol. 4, no. 1, hal. 145–154, 2022, doi: 10.47065/josyc.v4i1.2586.

D. Normawati dan S. A. Prayogi, “Implementasi Naïve Bayes Classifier Dan Confusion Matrix Pada Analisis Sentimen Berbasis Teks Pada Twitter,” J. Sains Komput. Inform. (J-SAKTI, vol. 5, no. 2, hal. 697–711, 2021.

M. N. Hidayat dan R. Pramudita, “Analisis Sentimen Terhadap Pembelajaran Secara Daring Pasca Pandemi Covid-19 Menggunakan Metode IndoBERT,” Inf. Manag. Educ. Prof. J. Inf. Manag., vol. 8, no. 2, hal. 161, 2024, doi: 10.51211/imbi.v8i2.2719.

R. R. Wahid, F. T. Anggraeny, dan B. Nugroho, “Implementasi Metode Extreme Learning Machine untuk Klasifikasi Tumor Otak pada Citra Magnetic Resonance Imaging,” Pros. Semin. Nas. Inform. Bela Negara, vol. 1, no. November 2020, hal. 16–20, 2020, doi: 10.33005/santika.v1i0.45.

Downloads

Published

20-09-2024

How to Cite

[1]
R. R. . Jannah, M. Z. . Sholahuddin, D. Z. Haq, and D. C. R. Novitasari, “KLASIFIKASI KUALITAS UDARA MENGGUNAKAN METODE EXTREME LEARNING MACHINE (ELM)”, METHODIKA, vol. 10, no. 2, pp. 19–23, Sep. 2024.