MENDETEKSI SECARA OTOMATIS OBJEK GERAKAN BERDASARKAN GAUSSIAN MIXTURE MODEL MENGGUNAKAN APLIKASI MATLAB

Authors

  • Aldina Syahfaridzah Universitas Harapan Medan
  • Adelia Kartika Panggabean Universitas Harapan Medan
  • Nabila Ayu Ardiningsih Universitas Harapan Medan

DOI:

https://doi.org/10.46880/mtk.v6i2.242

Keywords:

Detecting Moving Objects, Gaussian Mixture Model, Matlab 2016 Application

Abstract

Automatically detects moving objects on a pedestrian video, each object will be detected by counting objects that appear at the beginning of the video based on a number. In detecting this object, the model used is the Gaussian Mixture Model whose performance is very effective if applied to any area that occurs in an object motion detected in the video. In this study, the Gaussian Mixture Model is used to model the background colors of each pixel. To facilitate the detection of this object, the Matlab 2016 application is also used, this application helps facilitate detection based on the size that will be adjusted according to the object to be detected.

 

References

. Airlangga, U. (2019). PENGARUH PENERIMAAN SISTEM PEMBAYARAN E-CASH DENGAN MENGGUNAKAN TAM ( TECHNOLOGY ACCEPTANCE MODEL ) TERHADAP INTENSITAS TRANSAKSI NON TUNAI Victor Jonathan Mahubessy. 3(2), 160–165.

. Amaluddin, F., Muslim, M., & Naba, A. (2015). Klasifikasi Kendaraan Menggunakan Gaussian Mixture Model (GMM) Dan Fuzzy Cluster K Means (FCM). Jurnal EECCIS, 9(1), pp.19-24.

. Ansari, R. D., Purnama, B., Si, S., & Sthevanie, F. (2014). Penerapan dan Analisis Sistem Penghitungan Orang Menggunakan Adaptive Gaussian Mixture Model dan Local Binary Pattern Implementation and Analysis of People Counting System Using Adaptive Gaussian Mixture Model and Local Binary Pattern. EProceeding of Engineering, 2(2), 6008–6015.

. Himawan, F., & Al Fatta, H. (2012). Pembuatan Video Klip “Terbang” Oleh “Flourescent Band” Dengan Menggunakan Teknik Stop Motion. Data Manajemen Dan Teknologi Informasi (DASI), 13(4), 17.

. Munawaroh, Y. F., & Salamah, I. (2018). Analisa Perbandingan Algoritma Histogram of Oriented Gradient ( HOG ) dan Gaussian Mixture Model ( GMM ) Dalam Mendeteksi Manusia. 251–255.

. Parinduri, I. (2018). Model dan Simulasi Rangkaian RLC Menggunakan Aplikasi Matlab Metode Simulink.

. Journal of Science and Social Research, 1(1), 42–47.

. Prakoso, D. H., Purnama, B., & Sthevanie, F. (2015). Penghitungan Orang dengan Metode Gaussian Mixture Model dan Human Presence Map Studi Kasus : Penghitungan Orang di dalam Kelas. 2(1), 1562–1573.

. Putra, D. K., Iwut, I., & Atmaja, R. D. (2017). Simulasi Dan Analisis Speaker Recognition Menggunakan Metode Mel Frequency Cepstrum Coefficient (MFCC) Dan Gaussian Mixture Model (GMM). proceedings of Engineering, 4(2), 1766–1772. Retrieved from http://libraryeproceeding.telkomuniversity.ac.id/index.php/engineering/article/view/487/460

Downloads

Published

23-07-2021

How to Cite

[1]
Aldina Syahfaridzah, A. K. . Panggabean, and Nabila Ayu Ardiningsih, “MENDETEKSI SECARA OTOMATIS OBJEK GERAKAN BERDASARKAN GAUSSIAN MIXTURE MODEL MENGGUNAKAN APLIKASI MATLAB”, METHODIKA, vol. 6, no. 2, pp. 19–23, Jul. 2021.